DOI QR코드

DOI QR Code

Differential Localisation of PARP-1 N-Terminal Fragment in PARP-1+/+ and PARP-1-/- Murine Cells

  • Rajiah, Ida Rachel (Department of Physiology, Development and Neuroscience, University of Cambridge) ;
  • Skepper, Jeremy (Department of Physiology, Development and Neuroscience, University of Cambridge)
  • 투고 : 2014.04.03
  • 심사 : 2014.07.07
  • 발행 : 2014.07.31

초록

Human PARP family consists of 17 members of which PARP-1 is a prominent member and plays a key role in DNA repair pathways. It has an N-terminal DNA-binding domain (DBD) encompassing the nuclear localisation signal (NLS), central automodification domain and C-terminal catalytic domain. PARP-1 accounts for majority of poly-(ADP-ribose) polymer synthesis that upon binding to numerous proteins including PARP itself modulates their activity. Reduced PARP-1 activity in ageing human samples and its deficiency leading to telomere shortening has been reported. Hence for cell survival, maintenance of genomic integrity and longevity presence of intact PARP-1 in the nucleus is paramount. Although localisation of full-length and truncated PARP-1 in PARP-1 proficient cells is well documented, subcellular distribution of PARP-1 fragments in the absence of endogenous PARP-1 is not known. Here we report the differential localisation of PARP-1 Nterminal fragment encompassing NLS in PARP-$1^{+/+}$ and PARP-$1^{-/-}$ mouse embryo fibroblasts by live imaging of cells transiently expressing EGFP tagged fragment. In PARP-$1^{+/+}$ cells the fragment localises to the nuclei presenting a granular pattern. Furthermore, it is densely packaged in the midsections of the nucleus. In contrast, the fragment localises exclusively to the cytoplasm in PARP-$1^{-/-}$ cells. Flourescence intensity analysis further confirmed this observation indicating that the N-terminal fragment requires endogenous PARP-1 for its nuclear transport. Our study illustrates the trafficking role of PARP-1 independently of its enzymatic activity and highlights the possibility that full-length PARP-1 may play a key role in the nuclear transport of its siblings and other molecules.

키워드

참고문헌

  1. Alkhateeb, AA, and Connor, JR (2010). Nuclear ferritin: a new role for ferritin in cell biology. Biochem Biophys Acta. 1800, 793-797. https://doi.org/10.1016/j.bbagen.2010.03.017
  2. Barnes, DE, and Lindahl, T (2004). Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 37, 445-476.
  3. Bjelland, S, and Seeberg, E (2003). Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res. 531, 37-80. https://doi.org/10.1016/j.mrfmmm.2003.07.002
  4. Burkle, A (2006). DNA repair and PARP in aging. Free Radic Res. 40, 1295-1302. https://doi.org/10.1080/10715760600915288
  5. Cai, CX, Birk, DE, and Linsenmayer, TF (1998). Nuclear ferritin protects DNA from UV damage in corneal epithelial cells. Mol Biol Cell. 9, 1037-1051. https://doi.org/10.1091/mbc.9.5.1037
  6. Caldecott, KW (2008). Single-strand break repair and genetic disease. Nat Rev Genet. 9, 619-631.
  7. Chevanne, M, Calia, C, Zampieri, M, Cecchinelli, B, Caldini, R, Monti, D, Bucci, L, Franceschi, C, and Caiafa, P (2007). Oxidative DNA damage repair and PARP 1 and PARP 2 expression in Epstein-Barr virus-immortalized B lymphocyte cells from young subjects, old subjects, and centenarians. Rejuvenation Res. 10, 191-203. https://doi.org/10.1089/rej.2006.0514
  8. de Murcia, G, Schreiber, V, Molinete, M, Saulier, B, Poch, O, Masson, M, Niedergang, C, and Menissier de Murcia, J (1994). Structure and function of poly (ADP-ribose) polymerase. Mol Cell Biochem. 138, 15-24. https://doi.org/10.1007/BF00928438
  9. Dizdaroglu, M, Jaruga, P, Birincioglu, M, and Rodriguez, H (2002). Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Bio Med. 32, 1102-1115. https://doi.org/10.1016/S0891-5849(02)00826-2
  10. Gradwohl, G, Menissier de Murcia, JM, Molinete, M, Simonin, F, Koken, M, Hoeijmakers, JH, and de Murcia, G (1990). The second zinc-finger domain of poly (ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Natl Acad Sci USA. 87, 2990-2994. https://doi.org/10.1073/pnas.87.8.2990
  11. Kameshita, I, Matsuda, Z, Taniguchi, T, and Shizuta, Y (1984). Poly (ADP-ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain. J Biol Chem. 259, 4770-4776.
  12. Krishnakumar, R, and Kraus, W (2010). The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell. 39, 8-24. https://doi.org/10.1016/j.molcel.2010.06.017
  13. Kun, E, Zimber, PH, Chang, AC, Puschendorf, B, and Grunicke, H (1975). Macromolecular enzymatic product of $NAD^{+}$ in liver mitochondria. Proc Natl Acad Sci USA. 72, 1436-1440. https://doi.org/10.1073/pnas.72.4.1436
  14. Lamarre, D, Talbot, B, Leduc, Y, Muller, S, and Poirier, G (1986). Production and characterization of monoclonal antibodies specific for the functional domains of poly (ADP-ribose) polymerase. Biochem Cell Biol. 64, 368-376. https://doi.org/10.1139/o86-051
  15. Langelier, MF, Planck, JL, Roy, S, and Pascal, JM (2012). Structural basis for DNA damage-dependent poly(ADP-ribosyl) ation by human PARP-1. Science. 336, 728-732. https://doi.org/10.1126/science.1216338
  16. Lazebnik, YA, Kaufmann, SH, Desnoyers, S, Poirier, GG, and Eamshaw, WC (1994). Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347. https://doi.org/10.1038/371346a0
  17. Lian, Z, and Di Cristofano, A (2005). Class reunion: PTEN joins the nuclear crew. Oncogene. 24, 7394-7400. https://doi.org/10.1038/sj.onc.1209089
  18. Lord, CJ, and Ashworth, A (2012). The DNA damage response and cancer therapy. Nature. 481, 287-294. https://doi.org/10.1038/nature10760
  19. Luo, X, and Kraus, WL (2012). On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Gene Dev. 26, 417-432. https://doi.org/10.1101/gad.183509.111
  20. Maynard, S, Schurman, SH, Harboe, C, de Souza-Pinto, NC, and Bohr, VA (2009). Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis. 30, 2-10.
  21. Mendoza-Alvarez, H, and Alvarez-Gonzalez, R (2004). The 40 kDa carboxy-terminal domain of poly (ADP-ribose) polymerase-1 forms catalytically competent homo- and heterodimers in the absence of DNA. J Mol Biol. 336, 105-114. https://doi.org/10.1016/j.jmb.2003.11.055
  22. Molinete, M, Vermeulen, W, Burkle, A, Menissier-de Murcia, J, Kupper, JH, Hoeijmakers, JH, and de Murcia, G (1993). Overproduction of the poly (ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells. EMBO J. 12, 2109-2117.
  23. Mosgoeller, W, Steiner, M, Hozak, P, Penner, E, and Wesierska-Gadek, J (1996). Nuclear architecture and ultrastructural distribution of poly (ADP-ribosyl) transferase, a multifunctional enzyme. J Cell Sci. 109, 409-418.
  24. Muiras, ML, Muller, M, Schachter, F, and Burkle, A (1998). Increased poly (ADP-ribose) polymerase activity in lymphoblastoid cell lines from centenarians. J Mol Med. 76, 346-354. https://doi.org/10.1007/s001090050226
  25. Nicholson, DW, Ali, A, Thornberry, NA, Vaillancourt, JP, Ding, CK, Gallant, M, Gareau, Y, Griffin, PR, Labelle, M, and Lazebnik, YA (1995). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 376, 37-43. https://doi.org/10.1038/376037a0
  26. Ogata, N, Ueda, K, Kawaichi, M, and Hayaishi, O (1981). Poly (ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nuclei. J Biol Chem. 256, 4135-4137.
  27. Patel, AG, Flatten, KS, Schneider, PA, Dai, NT, McDonald, JS, Poirier, GG, and Kaufmann, SH (2012). Enhanced killing of cancer cells by poly(ADP-ribose) polymerase inhibitors and topoisomerase I inhibitors reflects poisoning of both enzymes. J Biol Chem. 287, 4198-4210. https://doi.org/10.1074/jbc.M111.296475
  28. Rajiah, IR (2013). PARP-1 N-terminal fragment down-regulates endogenous PARP-1 expression and activity and sensitises cells to oxidative stress. J Cell Sci Ther. 4, 1-6.
  29. Roberts, JH, Stard, P, Giri, CP, and Smulson, M (1975). Cytoplasmic poly(ADP-ribose) polymerase during the HeLa cell cycle. Arch Biochem Biophys. 171, 305-315. https://doi.org/10.1016/0003-9861(75)90037-5
  30. Rosenthal, DS, Ding, R, Simbulan-Rosenthal, CMG, Cherney, B, Vanek, P, and Smulson, ME (1997). Intact cell evidence of the early synthesis, and subsequent late apopain-mediated suppression, of polyl (ADP-ribose) during apoptosis. Exp Cell Res. 232, 313-321. https://doi.org/10.1006/excr.1997.3536
  31. Schreiber, V, Dantzer, F, Ame, JC, and de Murcia, G (2006). Poly (ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 7, 517-528. https://doi.org/10.1038/nrm1963
  32. Serrano, M, and Blasco, MA (2007). Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol. 8, 715-722. https://doi.org/10.1038/nrm2242
  33. Soldani, C, and Scovassi, AI (2002). Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis. 7, 321-328. https://doi.org/10.1023/A:1016119328968
  34. Svilar, D, Goellner, EM, Almeida, KH, and Sobol, RW (2011). Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal. 14, 2491-2507. https://doi.org/10.1089/ars.2010.3466
  35. Tewari, M, Quan, LT, O'Rourke, K, Desnoyers, S, Zeng, Z, Beidler, DR, Poirier, GG, Salvesen, GS, and Dixit, VM (1995). Yama/CPP32b. a mammalian homolog of CED-3, is a crmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 81, 801-809. https://doi.org/10.1016/0092-8674(95)90541-3
  36. Thompson, KJ, Fried, MG, Ye, Z, Boyer, P, and Connor, JR (2002). Regulation, mechanisms and proposed function of ferritin translocation to cell nuclei. J Cell Sci. 115, 2165-2177.
  37. Tong, WM, Cortes, U, and Wang, ZQ (2001). Poly(ADP-ribose) polymerase: a guardian angel protecting the genome and suppressing tumorigenesis. Biochim Biophys Acta. 1552, 27-37.
  38. Yung, TM, Sato, S, and Satoh, MS (2004). Poly(ADP-ribosyl) ation as a DNA damage-induced post-translational modification regulating poly(ADP-ribose) polymerase-1-topoisomerase I interaction. J Biol Chem. 279, 39686-39696. https://doi.org/10.1074/jbc.M402729200
  39. Zerfaoui, M, Errami, Y, Naura, AS, Suzuki, Y, Kim, H, Ju, J, Liu, T, Hans, CP, Kim, JG, and Abd Elmageed, ZY (2010). Poly (ADP-ribose) polymerase-1 is a determining factor in Crm1-mediated nuclear export and retention of p65 NF-kappa B upon TLR4 stimulation. J Immunol. 185, 1894-1902. https://doi.org/10.4049/jimmunol.1000646

피인용 문헌

  1. MicroRNAs and DNA-Damaging Drugs in Breast Cancer: Strength in Numbers vol.8, pp.2234-943X, 2018, https://doi.org/10.3389/fonc.2018.00352
  2. Poly-ADP Ribosyl Polymerase 1 (PARP1) Regulates Influenza A Virus Polymerase vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/8512363