DOI QR코드

DOI QR Code

A Tale of Two Models: Mouse and Zebrafish as Complementary Models for Lymphatic Studies

  • Kim, Jun-Dae (Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine) ;
  • Jin, Suk-Won (Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine)
  • Received : 2014.04.29
  • Accepted : 2014.05.02
  • Published : 2014.07.31

Abstract

Lymphatic vessels provide essential roles in maintaining fluid homeostasis and lipid absorption. Dysfunctions of the lymphatic vessels lead to debilitating pathological conditions, collectively known as lymphedema. In addition, lymphatic vessels are a critical moderator for the onset and progression of diverse human diseases including metastatic cancer and obesity. Despite their clinical importance, there is no currently effective pharmacological therapy to regulate functions of lymphatic vessels. Recent efforts to manipulate the Vascular Endothelial Growth Factor-C (VEGFC) pathway, which is arguably the most important signaling pathway regulating lymphatic endothelial cells, to alleviate lymphedema yielded largely mixed results, necessitating identification of new targetable signaling pathways for therapeutic intervention for lymphedema. Zebrafish, a relatively new model system to investigate lymphatic biology, appears to be an ideal model to identify novel therapeutic targets for lymphatic biology. In this review, we will provide an overview of our current understanding of the lymphatic vessels in vertebrates, and discuss zebrafish as a promising in vivo model to study lymphatic vessels.

Keywords

References

  1. Abrams, EW, and Mullins, MC (2009). Early zebrafish development: it’s in the maternal genes. Curr Opin Genet Dev. 19, 396-403. https://doi.org/10.1016/j.gde.2009.06.002
  2. Abtahian, F, Guerriero, A, Sebzda, E, Lu, MM, Zhou, R, Mocsai, A, Myers, EE, Huang, B, Jackson, DG, and Ferrari, VA (2003). Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science. 299, 247-251. https://doi.org/10.1126/science.1079477
  3. Achen, MG, McColl, BK, and Stacker, SA (2005). Focus on lymphangiogenesis in tumor metastasis. Cancer Cell. 7, 121-127. https://doi.org/10.1016/j.ccr.2005.01.017
  4. Alders, M, Hogan, BM, Gjini, E, Salehi, F, Al-Gazali, L, Hennekam, EA, Holmberg, EE, Mannens, MM, Mulder, MF, and Offerhaus, GJ (2009). Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet. 41, 1272-1274. https://doi.org/10.1038/ng.484
  5. Alitalo, K (2011). The lymphatic vasculature in disease. Nat Med. 17, 1371-1380. https://doi.org/10.1038/nm.2545
  6. Aoyagi, T, Nagahashi, M, Yamada, A, and Takabe, K (2012). The role of sphingosine-1-phosphate in breast cancer tumor-induced lymphangiogenesis. Lymphat Res Biol. 10, 97-106. https://doi.org/10.1089/lrb.2012.0010
  7. Banerji, S, Ni, J, Wang, SX, Clasper, S, Su, J, Tammi, R, Jones, M, and Jackson, DG (1999). LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 144, 789-801. https://doi.org/10.1083/jcb.144.4.789
  8. Bazigou, E, and Makinen, T (2013). Flow control in our vessels: vascular valves make sure there is no way back. Cell Mol Life Sci. 70, 1055-1066. https://doi.org/10.1007/s00018-012-1110-6
  9. Bazigou, E, Xie, S, Chen, C, Weston, A, Miura, N, Sorokin, L, Adams, R, Muro, AF, Sheppard, D, and Makinen, T (2009). Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell. 17, 175-186. https://doi.org/10.1016/j.devcel.2009.06.017
  10. Bedell, VM, Wang, Y, Campbell, JM, Poshusta, TL, Starker, CG, Krug, RG, Tan, W, Penheiter, SG, Ma, AC, and Leung, AY (2012). In vivo genome editing using a high-efficiency TALEN system. Nature. 491, 114-118. https://doi.org/10.1038/nature11537
  11. Bill, BR, Petzold, AM, Clark, KJ, Schimmenti, LA, and Ekker, SC (2009). A primer for morpholino use in zebrafish. Zebrafish. 6, 69-77. https://doi.org/10.1089/zeb.2008.0555
  12. Blackburn, PR, Campbell, JM, Clark, KJ, and Ekker, SC (2013). The CRISPR system--keeping zebrafish gene targeting fresh. Zebrafish. 10, 116-118. https://doi.org/10.1089/zeb.2013.9999
  13. Bos, FL, Caunt, M, Peterson-Maduro, J, Planas-Paz, L, Kowalski, J, Karpanen, T, van Impel, A, Tong, R, Ernst, JA, and Korving, J (2011). CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res. 109, 486-491. https://doi.org/10.1161/CIRCRESAHA.111.250738
  14. Brouillard, P, Boon, L, and Vikkula, M (2014). Genetics of lymphatic anomalies. J Clin Invest. 124, 898-904. https://doi.org/10.1172/JCI71614
  15. Bruyere, F, and Noël, A (2010). Lymphangiogenesis: in vitro and in vivo models. FASEB J. 24, 8-21. https://doi.org/10.1096/fj.09-132852
  16. Campbell, JM, Hartjes, KA, Nelson, TJ, Xu, X, and Ekker, SC (2013). New and TALENted genome engineering toolbox. Circ Res. 113, 571-587. https://doi.org/10.1161/CIRCRESAHA.113.301765
  17. Cha, YR, Fujita, M, Butler, M, Isogai, S, Kochhan, E, Siekmann, AF, and Weinstein, BM (2012). Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature. Dev Cell. 22, 824-836. https://doi.org/10.1016/j.devcel.2012.01.011
  18. Chikly, B (1997). Who discovered the lymphatic system. Lymphology. 30, 186-193.
  19. Connell, FC, Gordon, K, Brice, G, Keeley, V, Jeffery, S, Mortimer, PS, Mansour, S, and Ostergaard, P (2013). The classification and diagnostic algorithm for primary lymphatic dysplasia: an update from 2010 to include molecular findings. Clin Genet. 84, 303-314. https://doi.org/10.1111/cge.12173
  20. Corey, DR, and Abrams, JM (2001). Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol. 2, .
  21. Dejana, E, Tournier-Lasserve, E, and Weinstein, BM (2009). The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 16, 209-221. https://doi.org/10.1016/j.devcel.2009.01.004
  22. DeWire, SM, and Violin, JD (2011). Biased ligands for better cardiovascular drugs: dissecting G-protein-coupled receptor pharmacology. Circ Res. 109, 205-216. https://doi.org/10.1161/CIRCRESAHA.110.231308
  23. Dorsam, RT, and Gutkind, JS (2007). G-protein-coupled receptors and cancer. Nat Rev Cancer. 9, 79-94.
  24. Doyon, Y, McCammon, JM, Miller, JC, Faraji, F, Ngo, C, Katibah, GE, Amora, R, Hocking, TD, Zhang, L, and Rebar, EJ (2008). Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. 26, 702-708. https://doi.org/10.1038/nbt1409
  25. Dunworth, WP, Cardona-Costa, J, Cagavi, E, Kim, JD, Fischer, JC, Meadows, S, Wang, Y, Cleaver, O, Qyang, Y, and Ober, EA (2013). Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos. Circ Res. 114, 56-66.
  26. Eichmann, A, Corbel, C, Jaffredo, T, Breant, C, Joukov, V, Kumar, V, Alitalo, K, and le Douarin, NM (1998). Avian VEGF-C: cloning, embryonic expression pattern and stimulation of the differentiation of VEGFR2-expressing endothelial cell precursors. Development. 125, 743-752.
  27. Ekker, SC (2000). Morphants: a new systematic vertebrate functional genomics approach. Yeast. 17, 302-306.
  28. Ellertsdottir, E, Lenard, A, Blum, Y, Krudewig, A, Herwig, L, Affolter, M, and Belting, HG (2010). Vascular morphogenesis in the zebrafish embryo. Dev Biol. 341, 56-65. https://doi.org/10.1016/j.ydbio.2009.10.035
  29. Enholm, B, Karpanen, T, Jeltsch, M, Kubo, H, Stenback, F, Prevo, R, Jackson, DG, Yla-Herttuala, S, and Alitalo, K (2001). Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res. 88, 623-629. https://doi.org/10.1161/01.RES.88.6.623
  30. Francois, M, Caprini, A, Hosking, B, Orsenigo, F, Wilhelm, D, Browne, C, Paavonen, K, Karnezis, T, Shayan, R, and Downes, M (2008). Sox18 induces development of the lymphatic vasculature in mice. Nature. 456, 643-647. https://doi.org/10.1038/nature07391
  31. Francois, M, Harvey, NL, and Hogan, BM (2011). The transcriptional control of lymphatic vascular development. Physiology (Bethesda). 26, 146-155. https://doi.org/10.1152/physiol.00053.2010
  32. Fritz-Six, KL, Dunworth, WP, Li, M, and Caron, KM (2008). Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest. 118, 40-50. https://doi.org/10.1172/JCI33302
  33. Geudens, I, Herpers, R, Hermans, K, Segura, I, Ruiz de Almodovar, C, Bussmann, J, De Smet, F, Vandevelde, W, Hogan, BM, and Siekmann, A (2010). Role of delta-like-4/Notch in the formation and wiring of the lymphatic network in zebrafish. Arterioscler Thromb Vasc Biol. 30, 1695-1702. https://doi.org/10.1161/ATVBAHA.110.203034
  34. Gilman, AG (1987). G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 56, 615-649. https://doi.org/10.1146/annurev.bi.56.070187.003151
  35. Goldsmith, ZG, and Dhanasekaran, DN (2007). G protein regulation of MAPK networks. Oncogene. 26, 3122-3142. https://doi.org/10.1038/sj.onc.1210407
  36. Gore, AV, Monzo, K, Cha, YR, Pan, W, and Weinstein, BM (2012). Vascular development in the zebrafish. Cold Spring Harb Perspect Med. 2, a006684.
  37. Guermazi, A, Brice, P, Hennequin, C, and Sarfati, E (2003). Lymphography: an old technique retains its usefulness. Radiographics. 23, 1541-1558. https://doi.org/10.1148/rg.236035704
  38. Hagerling, R, Pollmann, C, Andreas, M, Schmidt, C, Nurmi, H, Adams, RH, Alitalo, K, Andresen, V, Schulte-Merker, S, and Kiefer, F (2013). A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 32, 629-644. https://doi.org/10.1038/emboj.2012.340
  39. Heasman, J (2002). Morpholino oligos: making sense of antisense?. Dev Biol. 243, 209-214. https://doi.org/10.1006/dbio.2001.0565
  40. Hwang, WY, Fu, Y, Reyon, D, Maeder, ML, Tsai, SQ, Sander, JD, Peterson, RT, Yeh, JR, and Joung, JK (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 31, 227-229. https://doi.org/10.1038/nbt.2501
  41. Irrthum, A, Karkkainen, MJ, Devriendt, K, Alitalo, K, and Vikkula, M (2000). Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. 67, 295-301. https://doi.org/10.1086/303019
  42. James, JM, Nalbandian, A, and Mukouyama, YS (2013). TGF$\beta$ signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin. Development. 140, 3903-3914. https://doi.org/10.1242/dev.095026
  43. Jeltsch, M, Kaipainen, A, Joukov, V, Meng, X, Lakso, M, Rauvala, H, Swartz, M, Fukumura, D, Jain, RK, and Alitalo, K (1997). Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 276, 1423-1425. https://doi.org/10.1126/science.276.5317.1423
  44. Jeltsch, M, Jha, SK, Tvorogov, D, Anisimov, A, Leppanen, VM, Holopainen, T, Kivela, R, Ortega, S, Karpanen, T, and Alitalo, K (2014). CCBE1 enhances lymphangiogenesis via ADAMTS3-mediated VEGF-C activation. Circulation. 129, 1962-1971. https://doi.org/10.1161/CIRCULATIONAHA.113.002779
  45. Jin, SW, Beis, D, Mitchell, T, Chen, JN, and Stainier, DY (2005). Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development. 132, 5199-5209. https://doi.org/10.1242/dev.02087
  46. Kamei, M, Isogai, S, Pan, W, and Weinstein, BM (2010). Imaging blood vessels in the zebrafish. Methods Cell Biol. 100, 27-54. https://doi.org/10.1016/B978-0-12-384892-5.00002-5
  47. Karkkainen, MJ, Ferrell, RE, Lawrence, EC, Kimak, MA, Levinson, KL, McTigue, MA, Alitalo, K, and Finegold, DN (2000). Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet. 25, 153-159. https://doi.org/10.1038/75997
  48. Karkkainen, MJ, Haiko, P, Sainio, K, Partanen, J, Taipale, J, Petrova, TV, Jeltsch, M, Jackson, DG, Talikka, M, and Rauvala, H (2004). Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 5, 74-80. https://doi.org/10.1038/ni1013
  49. Karpinich, NO, and Caron, KM (2014). Apelin signaling: new G protein-coupled receptor pathway in lymphatic vascular development. Arterioscler Thromb Vasc Biol. 34, 239-241. https://doi.org/10.1161/ATVBAHA.113.302905
  50. Karpinich, NO, Kechele, DO, Espenschied, ST, Willcockson, HH, Fedoriw, Y, and Caron, KM (2013). Adrenomedullin gene dosage correlates with tumor and lymph node lymphangiogenesis. FASEB J. 27, 590-600. https://doi.org/10.1096/fj.12-214080
  51. Kerjaschki, D (2014). The lymphatic vasculature revisited. J Clin Invest. 124, 874-877. https://doi.org/10.1172/JCI74854
  52. Kidoya, H, and Takakura, N (2012). Biology of the apelin-APJ axis in vascular formation. J Biochem. 152, 125-131. https://doi.org/10.1093/jb/mvs071
  53. Kim, H, and Koh, GY (2010). Platelets take the lead in lymphatic separation. Circ Res. 106, 1184-1186. https://doi.org/10.1161/CIRCRESAHA.110.218719
  54. Kim, JD, and Kim, J (2014). Alk3/Alk3b and Smad5 Mediate BMP signaling during lymphatic development in zebrafish. Mol Cells. 37, 270-274. https://doi.org/10.14348/molcells.2014.0005
  55. Kim, JD, Kang, H, Larrivee, B, Lee, MY, Mettlen, M, Schmid, SL, Roman, BL, Qyang, Y, Eichmann, A, and Jin, SW (2012). Context-dependent proangiogenic function of bone morphogenetic protein signaling is mediated by disabled homolog 2. Dev Cell. 23, 441-448. https://doi.org/10.1016/j.devcel.2012.07.007
  56. Kim, JD, Kang, Y, Kim, J, Papangeli, I, Kang, H, Wu, J, Park, H, Nadelmann, E, Rockson, SG, and Chun, HJ (2013). Essential role of Apelin signaling during lymphatic development in zebrafish. Arterioscler Thromb Vasc Biol. 34, 338-345.
  57. Kimple, AJ, Bosch, DE, Giguere, PM, and Siderovski, DP (2011). Regulators of G-protein signaling and their G$\alpha$ substrates: promises and challenges in their use as drug discovery targets. Pharmacol Rev. 63, 728-749. https://doi.org/10.1124/pr.110.003038
  58. Kohli, V, Schumacher, JA, Desai, SP, Rehn, K, and Sumanas, S (2013). Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev Cell. 25, 196-206. https://doi.org/10.1016/j.devcel.2013.03.017
  59. Koltowska, K, Betterman, KL, Harvey, NL, and Hogan, BM (2013). Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature. Development. 140, 1857-1870. https://doi.org/10.1242/dev.089565
  60. Kuchler, AM, Gjini, E, Peterson-Maduro, J, Cancilla, B, Wolburg, H, and Schulte-Merker, S (2006). Development of the zebrafish lymphatic system requires VEGFC signaling. Curr Biol. 16, 1244-1248. https://doi.org/10.1016/j.cub.2006.05.026
  61. Kukk, E, Lymboussaki, A, Taira, S, Kaipainen, A, Jeltsch, M, Joukov, V, and Alitalo, K (1996). VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development. 122, 3829-3837.
  62. Larrivee, B, Prahst, C, Gordon, E, del Toro, R, Mathivet, T, Duarte, A, Simons, M, and Eichmann, A (2012). ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell. 22, 489-500. https://doi.org/10.1016/j.devcel.2012.02.005
  63. Lawson, ND, and Weinstein, BM (2002). In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 248, 307-318. https://doi.org/10.1006/dbio.2002.0711
  64. Lee, S, Jilani, SM, Nikolova, GV, Carpizo, D, and Iruela-Arispe, ML (2005). Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 169, 681-691. https://doi.org/10.1083/jcb.200409115
  65. Levet, S, Ciais, D, Merdzhanova, G, Mallet, C, Zimmers, TA, Lee, SJ, Navarro, FP, Texier, I, Feige, JJ, and Bailly, S (2013). Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood. 122, 598-607. https://doi.org/10.1182/blood-2012-12-472142
  66. Lindeman, RE, and Pelegri, F (2010). Vertebrate maternal-effect genes: Insights into fertilization, early cleavage divisions, and germ cell determinant localization from studies in the zebrafish. Mol Reprod Dev. 77, 299-313.
  67. Lohela, M, Saaristo, A, Veikkola, T, and Alitalo, K (2003). Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost. 90, 167-184.
  68. Marcelo, KL, Goldie, LC, and Hirschi, KK (2013). Regulation of endothelial cell differentiation and specification. Circ Res. 112, 1272-1287. https://doi.org/10.1161/CIRCRESAHA.113.300506
  69. McColl, BK, Baldwin, ME, Roufail, S, Freeman, C, Moritz, RL, Simpson, RJ, Alitalo, K, Stacker, SA, and Achen, MG (2003). Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D. J Exp Med. 198, 863-868. https://doi.org/10.1084/jem.20030361
  70. Meens, MJ, Sabine, A, Petrova, TV, and Kwak, BR (2014). Connexins in lymphatic vessel physiology and disease. FEBS Lett. 588, 1271-1277. https://doi.org/10.1016/j.febslet.2014.01.011
  71. Meng, X, Noyes, MB, Zhu, LJ, Lawson, ND, and Wolfe, SA (2008). Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. 26, 695-701. https://doi.org/10.1038/nbt1398
  72. Mohle, R, and Drost, AC (2012). G protein-coupled receptor crosstalk and signaling in hematopoietic stem and progenitor cells. Ann N Y Acad Sci. 1266, 63-67. https://doi.org/10.1111/j.1749-6632.2012.06559.x
  73. Murdaca, G, Cagnati, P, Gulli, R, Spano, F, Puppo, F, Campisi, C, and Boccardo, F (2012). Current views on diagnostic approach and treatment of lymphedema. Am J Med. 125, 134-140. https://doi.org/10.1016/j.amjmed.2011.06.032
  74. Murtomaki, A, Uh, MK, Choi, YK, Kitajewski, C, Borisenko, V, Kitajewski, J, and Shawber, CJ (2013). Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium. Development. 140, 2365-2376. https://doi.org/10.1242/dev.083865
  75. Neufeld, S, Planas-Paz, L, and Lammert, E (2014). Blood and lymphatic vascular tube formation in mouse. Semin Cell Dev Biol. pii: S1084-9521(14)00025-1.
  76. Niessen, K, Zhang, G, Ridgway, JB, Chen, H, Kolumam, G, Siebel, CW, and Yan, M (2011). The Notch1-Dll4 signaling pathway regulates mouse postnatal lymphatic development. Blood. 118, 1989-1997. https://doi.org/10.1182/blood-2010-11-319129
  77. Nithianandarajah-Jones, GN, Wilm, B, Goldring, CE, Muller, J, and Cross, MJ (2012). ERK5: structure, regulation and function. Cell Signal. 24, 2187-2196. https://doi.org/10.1016/j.cellsig.2012.07.007
  78. Ny, A, Koch, M, Schneider, M, Neven, E, Tong, RT, Maity, S, Fischer, C, Plaisance, S, Lambrechts, D, and Heligon, C (2005). A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med. 11, 998-1004. https://doi.org/10.1038/nm1285
  79. Oka, M, Iwata, C, Suzuki, HI, Kiyono, K, Morishita, Y, Watabe, T, Komuro, A, Kano, MR, and Miyazono, K (2008). Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood. 111, 4571-4579. https://doi.org/10.1182/blood-2007-10-120337
  80. Okuda, KS, Astin, JW, Misa, JP, Flores, MV, Crosier, KE, and Crosier, PS (2012). lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development. 139, 2381-2391. https://doi.org/10.1242/dev.077701
  81. Oliver, G (2004). Lymphatic vasculature development. Nat Rev Immunol. 4, 35-45. https://doi.org/10.1038/nri1258
  82. Oliver, G, and Srinivasan, RS (2010). Endothelial cell plasticity: how to become and remain a lymphatic endothelial cell. Development. 137, 363-372. https://doi.org/10.1242/dev.035360
  83. Pfeiffer, F, Kumar, V, Butz, S, Vestweber, D, Imhof, BA, Stein, JV, and Engelhardt, B (2008). Distinct molecular composition of blood and lymphatic vascular endothelial cell junctions establishes specific functional barriers within the peripheral lymph node. Eur J Immunol. 38, 2142-2155. https://doi.org/10.1002/eji.200838140
  84. Pistocchi, A, Bartesaghi, S, Cotelli, F, and Del Giacco, L (2008). Identification and expression pattern of zebrafish prox2 during embryonic development. Dev Dyn. 237, 3916-3920. https://doi.org/10.1002/dvdy.21798
  85. Pollmann, C, Hagerling, R, and Kiefer, F (2014). Visualization of lymphatic vessel development, growth, and function. Adv Anat Embryol Cell Biol. 214, 167-186. https://doi.org/10.1007/978-3-7091-1646-3_13
  86. Prevo, R, Banerji, S, Ferguson, DJ, Clasper, S, and Jackson, DG (2001). Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem. 276, 19420-19430. https://doi.org/10.1074/jbc.M011004200
  87. Sabin, FR (1902). On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat. 1, 367-389. https://doi.org/10.1002/aja.1000010310
  88. Simon, MI, Strathmann, MP, and Gautam, N (1991). Diversity of G proteins in signal transduction. Science. 252, 802-808. https://doi.org/10.1126/science.1902986
  89. Smrcka, AV (2013). Molecular targeting of G$\alpha$ and G$\beta$$\gamma$ subunits: a potential approach for cancer therapeutics. Trends Pharmacol Sci. 34, 290-298. https://doi.org/10.1016/j.tips.2013.02.006
  90. Srinivasan, RS, Dillard, ME, Lagutin, OV, Lin, FJ, Tsai, S, Tsai, MJ, Samokhvalov, IM, and Oliver, G (2007). Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev. 21, 2422-2432. https://doi.org/10.1101/gad.1588407
  91. Srinivasan, RS, Geng, X, Yang, Y, Wang, Y, Mukatira, S, Studer, M, Porto, MP, Lagutin, O, and Oliver, G (2010). The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 24, 696-707. https://doi.org/10.1101/gad.1859310
  92. Tammela, T, and Alitalo, K (2010). Lymphangiogenesis: Molecular mechanisms and future promise. Cell. 140, 460-476. https://doi.org/10.1016/j.cell.2010.01.045
  93. van der Putte, SC (1975). The development of the lymphatic system in man. Adv Anat Embryol Cell Biol. 51, 3-60.
  94. van Impel, A, Zhao, Z, Hermkens, DM, Roukens, MG, Fischer, JC, Peterson-Maduro, J, Duckers, H, Ober, EA, Ingham, PW, and Schulte-Merker, S (2014). Divergence of zebrafish and mouse lymphatic cell fate specification pathways. Development. 141, 1228-1238. https://doi.org/10.1242/dev.105031
  95. Venkatakrishnan, AJ, Deupi, X, Lebon, G, Tate, CG, Schertler, GF, and Babu, MM (2013). Molecular signatures of G-protein-coupled receptors. Nature. 494, 185-194. https://doi.org/10.1038/nature11896
  96. Wagner, DS, Dosch, R, Mintzer, KA, Wiemelt, AP, and Mullins, MC (2004). Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II. Dev Cell. 6, 781-790. https://doi.org/10.1016/j.devcel.2004.04.001
  97. Wang, Y, and Oliver, G (2010). Current views on the function of the lymphatic vasculature in health and disease. Genes Dev. 24, 2115-2126. https://doi.org/10.1101/gad.1955910
  98. Wigle, JT, and Oliver, G (1999). Prox1 function is required for the development of the murine lymphatic system. Cell. 98, 769-778. https://doi.org/10.1016/S0092-8674(00)81511-1
  99. Wigle, JT, Harvey, N, Detmar, M, Lagutina, I, Grosveld, G, Gunn, MD, Jackson, DG, and Oliver, G (2002). An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505-1513. https://doi.org/10.1093/emboj/21.7.1505
  100. Wiley, DM, Kim, JD, Hao, J, Hong, CC, Bautch, VL, and Jin, SW (2011). Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat Cell Biol. 13, 686-692.
  101. Wilkinson, RN, and van Eeden, FJ (2014). The zebrafish as a model of vascular development and disease. Prog Mol Biol Transl Sci. 124, 93-122. https://doi.org/10.1016/B978-0-12-386930-2.00005-7
  102. Yang, Y, García-Verdugo, JM, Soriano-Navarro, M, Srinivasan, RS, Scallan, JP, Singh, MK, Epstein, JA, and Oliver, G (2012). Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood. 120, 2340-2348. https://doi.org/10.1182/blood-2012-05-428607
  103. Yaniv, K, Isogai, S, Castranova, D, Dye, L, Hitomi, J, and Weinstein, BM (2006). Live imaging of lymphatic development in the zebrafish. Nat Med. 12, 711-716. https://doi.org/10.1038/nm1427
  104. Yoon, CM, Hong, BS, Moon, HG, Lim, S, Suh, PG, Kim, YK, Chae, CB, and Gho, YS (2008). Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways. Blood. 112, 1129-1138. https://doi.org/10.1182/blood-2007-11-125203
  105. Zheng, W, Tammela, T, Yamamoto, M, Anisimov, A, Holopainen, T, Kaijalainen, S, Karpanen, T, Lehti, K, Yla-Herttuala, S, and Alitalo, K (2011). Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood. 118, 1154-1162. https://doi.org/10.1182/blood-2010-11-317800
  106. Zuther, JE, and Norton, S (2012). Lymphedema management: the comprehensive guide for practitioners (Thieme, New York)

Cited by

  1. Effects of Swimming Exercise and Soybean oil Administration on Blood Lipid and Endothelial Lesion in Rat. vol.25, pp.1, 2016, https://doi.org/10.15857/ksep.2016.25.1.27
  2. Histology and ultrastructure of the thymus during development in tilapia,Oreochromis niloticus vol.230, pp.5, 2017, https://doi.org/10.1111/joa.12597
  3. Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors vol.143, pp.20, 2016, https://doi.org/10.1242/dev.137901
  4. Vascular endothelial growth factor C treatment for mouse hind limb lymphatic revascularization vol.5, pp.2, 2014, https://doi.org/10.1002/vms3.151
  5. Differential Clearance of Aβ Species from the Brain by Brain Lymphatic Endothelial Cells in Zebrafish vol.22, pp.21, 2014, https://doi.org/10.3390/ijms222111883