DOI QR코드

DOI QR Code

ON THE STABILITY OF AN ADDITIVE SET-VALUED FUNCTIONAL EQUATION

  • Chu, Hahng-Yun (Department of Mathematics Chungnam National University) ;
  • Yoo, Seung Ki (Department of Mathematics Chungnam National University)
  • 투고 : 2014.05.01
  • 심사 : 2014.06.30
  • 발행 : 2014.08.15

초록

In this paper, we consider the additive set-valued functional equation $nf(\sum_{i=1}^{n}x_i)=\sum_{i=1}^{n}f(x_i){\oplus}\sum_{1{\leq}i<j{\leq}n}f(x_i+x_j)$ where $n{\geq}2$ is an integer, and prove the Hyers-Ulam stability of the functional equation.

키워드

참고문헌

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  2. J. P. Aubin and H. Frankow, Set-Valued Analysis, Birkhauser, Boston, 1990.
  3. R. J. Aumann, Integral of set-valued functions, J. Math. Appl. 12 (1965), 1-12.
  4. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Notes in Math. 580, Springer, Berlin, 1977.
  5. H. Y. Chu, A. Kim, and S. K. Yoo, On the stability of the generalized cubic set-valued functional equation, Appl. Math. Lett. 37 (2014), 7-14. https://doi.org/10.1016/j.aml.2014.05.008
  6. G. Debreu, Integration of correspondences, Pro. of Fifth Berkeley Sym. on Mathematical Statistics and Probability, Vol II, Part I (1966), 351-372.
  7. Z. Gajda, On the stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
  8. C. Hess, Set-valued integration and set-valued probability theory : an overview, Handbook of Measure Theory, Vols. I, II, North-Holland, Amsterdam, 2002.
  9. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.
  10. S. M. Jung and Z. H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory Appl. Vol. 2008, Article ID 732086, 11pages (2008).
  11. H. A. Kenary, H. Rezaei, Y. Gheisari, and C. Park, On the stability of set-valued functional equations with the fixed point alternative, Fixed Point Theory and Applications 81, 2012 : 81, 17pages (2012).
  12. G. Lu and C. Park, Hyers-Ulam stability of additive set-valued functional equa-tions, Appl. Math. Lett. 24 (2011), 1312-1316. https://doi.org/10.1016/j.aml.2011.02.024
  13. B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for con-tractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305-309.
  14. P. Nakmahachalasint, Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stabili-ties of an additive functional equation in several variables, International Jour-nal of Mathematics and Mahtematical Sciences, Vol. 2007, Article ID 13437, 6pages, (2007).
  15. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  16. S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

피인용 문헌

  1. APPROXIMATE QUADRATIC MAPPINGS IN QUASI-β-NORMED SPACES vol.28, pp.2, 2015, https://doi.org/10.14403/jcms.2015.28.2.311
  2. A REMARK ON A STABILITY IN MULTI-VALUED DYNAMICS vol.30, pp.1, 2014, https://doi.org/10.14403/jcms.2017.30.1.141