참고문헌
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- J. P. Aubin and H. Frankow, Set-Valued Analysis, Birkhauser, Boston, 1990.
- R. J. Aumann, Integral of set-valued functions, J. Math. Appl. 12 (1965), 1-12.
- C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Notes in Math. 580, Springer, Berlin, 1977.
- H. Y. Chu, A. Kim, and S. K. Yoo, On the stability of the generalized cubic set-valued functional equation, Appl. Math. Lett. 37 (2014), 7-14. https://doi.org/10.1016/j.aml.2014.05.008
- G. Debreu, Integration of correspondences, Pro. of Fifth Berkeley Sym. on Mathematical Statistics and Probability, Vol II, Part I (1966), 351-372.
- Z. Gajda, On the stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
- C. Hess, Set-valued integration and set-valued probability theory : an overview, Handbook of Measure Theory, Vols. I, II, North-Holland, Amsterdam, 2002.
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.
- S. M. Jung and Z. H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory Appl. Vol. 2008, Article ID 732086, 11pages (2008).
- H. A. Kenary, H. Rezaei, Y. Gheisari, and C. Park, On the stability of set-valued functional equations with the fixed point alternative, Fixed Point Theory and Applications 81, 2012 : 81, 17pages (2012).
- G. Lu and C. Park, Hyers-Ulam stability of additive set-valued functional equa-tions, Appl. Math. Lett. 24 (2011), 1312-1316. https://doi.org/10.1016/j.aml.2011.02.024
- B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for con-tractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305-309.
- P. Nakmahachalasint, Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stabili-ties of an additive functional equation in several variables, International Jour-nal of Mathematics and Mahtematical Sciences, Vol. 2007, Article ID 13437, 6pages, (2007).
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
피인용 문헌
- APPROXIMATE QUADRATIC MAPPINGS IN QUASI-β-NORMED SPACES vol.28, pp.2, 2015, https://doi.org/10.14403/jcms.2015.28.2.311
- A REMARK ON A STABILITY IN MULTI-VALUED DYNAMICS vol.30, pp.1, 2014, https://doi.org/10.14403/jcms.2017.30.1.141