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ON THE STABILITY OF AN ADDITIVE SET-VALUED
FUNCTIONAL EQUATION

Hahng-Yun Chu* and Seung Ki Yoo**

Abstract. In this paper, we consider the additive set-valued func-
tional equation nf(

∑n
i=1 xi) =

∑n
i=1 f(xi) ⊕

∑
1≤i<j≤n f(xi + xj)

where n ≥ 2 is an integer, and prove the Hyers-Ulam stability of
the functional equation.

1. Introduction

The stability problem of functional equations is originated from the
question of S. M. Ulam [16] concerning the stability of group homo-
morphisms. Let G1 be a group and G2 be a metric group with the
metric d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a
mapping h : G1 → G2 satisfies the inequality d(h(x.y), h(x)h(y)) < δ
for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with
d(h(x),H(x)) < ε for all x ∈ G1?

In 1941, D. H. Hyers [9] considered the case of approximately addi-
tive mappings f : E1 → E2 where E1 and E2 are Banach spaces and
f satisfies inequality ‖f(x + y) − f(x) − f(y)‖ ≤ ε for all x, y ∈ E1.
He proved that the function T : E1 → E2 which is given by T (x) =
limn→∞ 2−nf(2nx) for all x ∈ E1 is the unique additive mapping satis-
fying ‖f(x)− T (x)‖ < ε.
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Hyers’ theorem has been generalized by Aoki [1] for additive mapping.
In 1978, Th. M. Rassias [15] proved the following theorem.

Theorem 1.1. Let f : E1 → E2 be a mapping from a normed vector
space E1 into a Banach space E2 subject to the inequality

(1.1) ‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E1, where ε and p are constants with ε > 0 and p < 1.
Then there exists a unique additive mapping T : E1 → E2 such that

(1.2) ‖f(x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ E. If p < 0, then inequality (1.1) holds for all x, y 6= 0, and
(1.2) for x 6= 0. Moreover, if the function t 7→ f(tx) from R into E2 is
continuous in t ∈ R for each fixed x ∈ E, then T is linear.

For the case p ≥ 1 related to the theorem, in 1991, Z. Gajda [7] proved
the question for the case p > 1. Recently, P. Nakmahachalasint [14]
proved the Hyers-Ulam-Rassias stability of the following n-dimensional
additive functional equation

(1.3) nf(
n∑

i=1

xi) =
n∑

i=1

f(xi) +
∑

1≤i<j≤n

f(xi + xj).

In this paper, we improve to establish the generalized Hyers-Ulam-
Rassias stability for the set-valued functional equation which is closely
related by the functional equation (1.3) and prove the Hyers-Ulam-
Rassias stability problem for the set-valued functional equation. The
study for set-valued functional equations in Banach spaces has been de-
veloped in the last decades. The papers by G. Debreu [6] and R.J.
Aumann [3] were inspired by problems arising in control theory and
mathematical economics. The stability problems of several functional
equation have been extensively investigated by a number of authors and
there are many interesting results concerning this problem (see [2], [5],
[4], [8], [11], [12]).

Throughout this paper, let X be a real vector space and Y be a
Banach space.

Now, we will introduce the properties for set-valued functional equa-
tions which goes into a Banace space. We define Cb(Y ) the set of all
closed bounded subset of Y and Cc(Y ) the set of all closed convex subset
of Y. We denote Ccb(Y ) the set of all closed convex bounded subsets of
Y.
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Let A, A′ ∈ Cc(Y ) and let α, β be positive real numbers. Then we
denote A⊕A′ := A + A′. So it is easy to prove that αA+αA′ = α(A+A′)
and (α + β)A ⊆ αA + βA for all α, β ∈ R+. Moreover, we obtain that
for every positive real number α and β, (α + β)A = αA + βA.

For a subset A ⊂ Y , the distance function d(·, A) and the support
function s(·, A) are defined by d(x,A) := inf{‖x− y‖: y ∈ A} for x ∈ Y
and s(x∗, A) := sup{< x∗, x > | x ∈ A} for x∗ ∈ Y ∗, respectively.

For A,A′ ∈ Cb(Y ), the Hausdorff distance h(A,A′) is defined by

h(A,A′) := inf{α ≥ 0| A ⊆ A′ + αBY , A′ ⊆ A + αBY },
where BY is the closed unit ball in Y . In [4], it was proved that
(Ccb(Y ),⊕, h) is a complete metric semigroup. G. Debreu [6] proved
that (Ccb(Y ),⊕, h) is isometrically embedded in a Banach space. The
following remark is easily proved from the definition of the Hausdorff
distance.

Remark 1.2. For A,A′, B, B′ ∈ Ccb(Y ) and α > 0, the followings
hold :

(a) h(A⊕A′, B ⊕B′) ≤ h(A, B) + h(A′, B′);
(b) h(αA,αB) = αh(A,B).

Let C(BY ∗) be the Banach space of continuous real-valued functions
on BY ∗ endowed with the uniform norm ‖ · ‖u. We define a function j
from (Ccb(Y ),⊕, h) to C(BY ∗) which is induced from s given by j(A) :=
s(·, A) for each A ∈ (Ccb(Y ),⊕, h).

Then the following properties also hold. (See [6].)

(a) j(A⊕B) = j(A) + j(B)
(b) j(αA) = αj(A)
(c) h(A, B) =‖ j(A)− j(B) ‖u

(d) j(Ccb(Y ) is closed in C(BY ∗)
for each A, B ∈ Ccb(Y ) and α ≥ 0.

2. Stability of the set-valued functional equation

Let f : X → Ccb(Y ) be a function. The additive set-valued functional
equation is defined by

(2.1) nf(
n∑

i=1

xi) =
n∑

i=1

f(xi)⊕
∑

1≤i<j≤n

f(xi + xj)
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for all x1, · · · , xn ∈ X, where n ≥ 2 is an integer. Every solution of the
additive set-valued functional equation is called an additive set-valued
mapping.

Theorem 2.1. Let n ≥ 2 be an integer and let φ : Xn → [0,∞) be a
function satisfying the following properties
(2.2)
∞∑

k=0

1
2k

φ(2kx, 2kx, 0, · · · , 0) < ∞, lim
k→∞

1
2k

φ(2kx1, 2kx2, · · · , 2kxn) = 0

for all x1, · · · , xn ∈ X and x ∈ X.
Suppose that f : X −→ (Ccb(Y ), h) is a set-valued mapping with

f(0) = {0} and

(2.3) h(nf(
n∑

i=1

xi),
n∑

i=1

f(xi)⊕
∑

1≤i<j≤n

f(xi + xj)) ≤ φ(x1, · · · , xn)

for all x1, · · · , xn ∈ X. Then there exists a unique additive set-valued
mapping T : X → (Ccb(Y ), h) such that

(2.4) h(f(x), T (x)) ≤ 1
2n− 2

∞∑

k=0

1
2k

φ(2kx, 2kx, 0, · · · , 0)

for all x ∈ X.

Proof. Set x1 = x2 = x and x3 = x4 = · · · = xn = 0 in (2.3). Since
the range of f is convex, we have

h(nf(2x), f(2x)⊕ (2n− 2)f(x)) ≤ φ(x, x, 0, · · · , 0)

for all x ∈ X. By Remark 1.2, we get

(2.5) h((n− 1)f(2x), (2n− 2)f(x)) ≤ φ(x, x, 0, · · · , 0)

for all x ∈ X. Dividing both sides of (2.5) by 2n− 2, we get

(2.6) h(
f(2x)

2
, f(x)) ≤ 1

2n− 2
φ(x, x, 0, · · · , 0)

for all x ∈ X. Replacing x by 2kx and deviding both sides of (2.6) by
2k, we obtain

(2.7) h(
f(2k+1x)

2k+1
,
f(2kx)

2k
) ≤ 1

2n− 2
1
2k

φ(2kx, 2kx, 0, · · · , 0)

for all x ∈ X. Let k, m be integers with k > m ≥ 0. So we have
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h(
f(2kx)

2k
,
f(2mx)

2m
) ≤

k−1∑

j=m

h(
1
2j

f(2jx),
1

2j+1
f(2j+1x))

≤ 1
2n− 2

k−1∑

j=m

1
2j

φ(2jx, 2jx, 0, · · · , 0)

(2.8)

for all x ∈ X. Therefore, we obtain from (2.2) and (2.8) that the se-
quence { 1

2k f(2kx)} is a Cauchy sequence for every x ∈ X. Since Y is
complete, the sequence { 1

2k f(2kx)} converges in Y . Therefore, we can
define a mapping T : X → (Ccb(Y ), h) as T (x) := limk→∞ 1

2k f(2kx).
Putting m = 0 and taking the limit as k → ∞ in (2.8), we get the
following inequality

h(T (x), f(x)) ≤ 1
2n− 2

∞∑

k=0

1
2k

φ(2kx, 2kx, 0, · · · , 0)

for all x ∈ X. It follows from (2.3) and (2.2) that

h(nT (
n∑

i=1

xi),
n∑

i=1

T (xi)⊕
∑

1≤i<j≤n

T (xi + xj))

≤ lim
k→∞

1
2k

φ(2kx1, 2kx2, · · · , 2kxn)

= 0

for all x1, x2, · · · , xn ∈ X. Hence we have that the mapping T is an
additive set-valued mapping.

Now we prove the uniqueness for the additive set-valued mapping
satisfying the inequality (2.4). To prove the uniqueness for the mapping,
let T ′ : X → Ccb(Y ) be another additive set-valued mapping satisfying
(2.3) and (2.4) . Then

h(T (x), T ′(x)) ≤ h(T (x), f(x)) + h(f(x), T ′(x))

≤ 1
n− 1

k−1∑

j=0

1
2j

φ(2jx, 2jx, 0, · · · , 0)
(2.9)

for all x ∈ X. Taking the limit as k →∞ in (2.9), we have T (x) = T ′(x)
for all x ∈ X. This completes the proof.
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Corollary 2.2. Let n ≥ 2 be an integer and let θ ≥ 0, 0 < p < 1.
Suppose that f : X → Ccb(Y ) is a set-valued mapping satisfying

(2.10) h(nf(
n∑

i=1

xi),
n∑

i=1

f(xi)⊕
∑

1≤i<j≤n

f(xi + xj)) ≤ θ

n∑

i=1

‖ xi ‖p

for all x1, x2, · · · , xn ∈ X. Then there exists a unique additive set-valued
mapping T : X → Ccb(Y ) satisfying the functional equation

nT (
n∑

i=1

xi) =
n∑

i=1

T (xi)⊕
∑

1≤i<j≤n

T (xi + xj)

and

h(f(x), T (x)) ≤ 2θ

(n− 1)(2− 2p)
‖ x ‖p

for all x1, x2, · · · , xn ∈ X and x ∈ X.

Proof. Putting x1 = x2 = · · · = xn = 0 in (2.10), we have

h(nf(0), nf(0)⊕ nC2f(0)) ≤ θ · 0 = 0,

which yields f(0) = {0}. So we let φ(x1, x2, · · · , xn) = θ
∑n

i=1 ‖ xi ‖p in
Theorem 2.1 and obtain the desired results.

Theorem 2.3. Let n ≥ 2 be an integer and let φ : Xn → [0,∞) be a
function satisfying the following properties
(2.11)

∞∑

k=0

2kφ(
x

2k
,

x

2k
, 0, · · · , 0) < ∞ and lim

k→∞
2kφ(

x1

2k
,
x2

2k
, · · · ,

xn

2k
) = 0

for all x1, · · · , xn ∈ X and x ∈ X.
Suppose that f : X −→ (Ccb(Y ), h) is a set-valued mapping with

f(0) = {0} and

(2.12) h(nf(
n∑

i=1

xi),
n∑

i=1

f(xi)⊕
∑

1≤i<j≤n

f(xi + xj)) ≤ φ(x1, · · · , xn)

for all x1, · · · , xn ∈ X. Then there exists a unique additive set-valued
mapping T : X → (Ccb(Y ), h) such that

(2.13) h(f(x), T (x)) ≤ 1
2n− 2

∞∑

k=0

2kφ(
x

2k
,

x

2k
, 0, · · · , 0)

for all x ∈ X.
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Proof. Replacing x by x
2k and multiplying by 2k in (2.6), we have the

following inequality

h(2k−1f(
x

2k−1
), 2kf(

x

2k
)) ≤ 2k

2n− 2
φ(

x

2k
,

x

2k
, 0, · · · , 0)

for all x ∈ X. The rest of this proof is similar to the proof of Theorem
2.1.

Corollary 2.4. Let n ≥ 2 be an integer and let θ ≥ 0, p > 1.
Suppose that f : X → Ccb(Y ) is a set-valued mapping satisfying the
following property

(2.14) h(nf(
n∑

i=1

xi),
n∑

i=1

f(xi)⊕
∑

1≤i<j≤n

f(xi + xj)) ≤ θ
n∑

i=1

‖ xi ‖p

for all x1, x2, · · · , xn ∈ X. Then there exists a unique additive set-valued
mapping T : X → Ccb(Y ) satisfying the functional equation

nT (
n∑

i=1

xi) =
n∑

i=1

T (xi)⊕
∑

1≤i<j≤n

T (xi + xj)

and

h(f(x), T (x)) ≤ 2θ

(n− 1)(2p − 2)
‖ x ‖p

for all x1, x2, · · · , xn ∈ X and x ∈ X.

Proof. From the proof of the Corollary 2.2, we get f(0) = {0}. Ap-
plying φ(x1, x2, · · · , xn) = θ

∑n
i=1‖ xi‖p in Theorem 2.3, we can obtain

the desired results.

3. Stability of the additive set-valued functional equation by
fixed point method

In this section, we will prove the stability of the additive set-valued
functional equation using the fixed point method. Let X be a set. A
function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies the following properties:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall the following theorem by Margolis and Diaz[13].
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Theorem 3.1. Let (X, d) be a complete generalized metric space and
let J : X → X be a strictly contractive mapping with Lipschitz constant
L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such
that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set

Y = {y ∈ X|d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y.

Next, using the fixed point method, we prove the stability of the
additive set-valued functional equation.

Theorem 3.2. Let n ≥ 2 be an integer. Suppose that a set-valued
mapping f : X → (Ccb(Y ), h) with f(0) = {0} satisfies the functional
inequality

(3.1) h(nf(
n∑

i=1

xi),
n∑

i=1

f(xi)⊕
∑

1≤i<j≤n

f(xi + xj)) ≤ φ(x1, · · · , xn)

for all x1, · · · , xn ∈ X and there exists a constant L with 0 < L < 1 for
which the function φ : Xn → [0,∞) satisfies

(3.2) φ(x, x, 0, · · · , 0) ≤ 2Lφ(
x

2
,
x

2
, 0, · · · , 0)

for all x ∈ X. Then there exists a unique additive set-valued mapping
T : X → (Ccb(Y ), h) given by T (x) = limk→∞ 1

2k f(2kx) such that

(3.3) h(f(x), T (x)) ≤ L

(n− 1)(1− L)
φ(x, x, 0, · · · , 0)

for all x ∈ X.

Proof. Put x1 = x2 = x and x3 = x4 = · · · = xn = 0 in (3.1). Since
the range of f is convex, we have

h(nf(2x), f(2x)⊕ (2n− 2)f(x)) ≤ φ(x, x, 0, · · · , 0)

for all x ∈ X. By Remark 1.2, we get

(3.4) h((n− 1)f(2x), (2n− 2)f(x)) ≤ φ(x, x, 0, · · · , 0)

for all x ∈ X. Dividing both sides of (3.4) by 2n− 2, we get
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h(
1
2
f(2x), f(x)) ≤ 1

2n− 2
φ(x, x, 0, · · · , 0)

≤ L

n− 1
φ(

x

2
,
x

2
, 0, · · · , 0)

(3.5)

for all x ∈ X. Let S:= {g | g : X → Ccb(Y ), g(0) = {0}}. For g1, g2 ∈ S,
we consider the generalized metric d(g1, g2) on S defined by

inf{µ ∈ (0,∞) | h(g1(x), g2(x)) ≤ µφ(x, x, 0, · · · , 0), ∀x ∈ X}

and inf{∅} = ∞. It is easy to prove that (S, d) is complete(see [10]).
Now, we define the linear mapping J : S → S given by Jg(x):= 1

2g(2x)
for all x ∈ X.

For g1, g2 ∈ S, let d(g1, g2) < µ, we get

h(Jg1(x), Jg2(x)) = h(
1
2
g1(2x),

1
2
g2(2x))

≤ µ

2
φ(2x, 2x, 0, · · · , 0)

≤ µLφ(x, x, 0, · · · , 0)

(3.6)

for all x ∈ X. The above inequality show that d(Jg1, Jg2) ≤ Ld(g1, g2)
for all g1, g2 ∈ S. Hence J is a strictly contractive mapping with Lip-
schitz constant L. So we obtain d(Jf, f) ≤ L

n−1 < ∞ in (3.5). By
Theorem 3.1, we get that the mapping T : X → Ccb(Y ) satisfies the
following properties:

(1) T has a fixed point of J , that is, T (2x) = 2T (x) fo all x ∈ X. The
mapping T has a fixed point of J in the set M = {g ∈ S : d(f, g) <
∞}. This implies that T is a unique mapping such that there
exists a µ ∈ (0,∞) satisfying h(f(x), T (x)) ≤ µφ(x, x, 0, · · · , 0)
for all x ∈ X.

(2) T is defined by the limit mapping as following

(3.7) T (x) := limk→∞
f(2kx)

2k
= limk→∞Jkf(x)

for all x ∈ X.
(3) d(f, T ) ≤ 1

1−Ld(f, Jf) implies the inequality d(f, T ) ≤ L
(n−1)(1−L)

and also implies that the inequality (3.3) holds. From (3.1) and
(3.7), we have that



464 Hahng-Yun Chu and Seung Ki Yoo

h(nT (
n∑

i=1

xi),
n∑

i=1

T (xi)⊕
∑

1≤i<j≤n

T (xi + xj))

= lim
k→∞

1
2k

h(nT (
n∑

i=1

2kxi),
n∑

i=1

T (2kxi)

⊕
∑

1≤i<j≤n

T (2kxi + 2kxj))

≤ lim
k→∞

1
2k

φ(
x

2k
,

x

2k
, 0, · · · , 0)

= 0

(3.8)

Therefore, T is a unique additive set-valued mapping satisfying
the inequality (3.3), as desired.

Corollary 3.3. Let θ ≥ 0, 0 < p < 1 be real numbers and X be
a real normed space. Suppose that f : X → Ccb(Y ) is a set-valued
mapping satisfying

(3.9) h(nf(
n∑

i=1

xi),
n∑

i=1

f(xi)⊕
∑

1≤i<j≤n

f(xi + xj)) ≤ θ
n∑

i=1

‖ xi ‖p

for all x1, x2, · · · , xn ∈ X, then there exists a unique additive set-valued
mapping T : X → Ccb(Y ) satisfying

h(f(x), T (x)) ≤ θ 2p

(n− 1)(2− 2p)
‖ x ‖p

for all x1, x2, · · · , xn ∈ X and x ∈ X.

Proof. We first take the function φ in Theorem 3.2 given by

φ(x1, x2, · · · , xn) := θ
n∑

k=1

‖ xk ‖p .

Then by choosing L = 2p−1, we get the desired result.

In the following theorem, we focus on changes of the condition for
the control function φ on the inequality (3.1).
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Theorem 3.4. Let n ≥ 2 be an integer. Suppose that a set-valued
mapping f : X → (Ccb(Y ), h) with f(0) = {0} satisfies the functional
inequality

(3.10) h(nf(
n∑

i=1

xi),
n∑

i=1

f(xi)⊕
∑

1≤i<j≤n

f(xi + xj)) ≤ φ(x1, · · · , xn)

for all x1, · · · , xn ∈ X and there exists a constant L with 0 < L < 1 for
which the function φ : Xn → [0,∞) satisfies

(3.11) φ(x, x, 0, · · · , 0) ≤ L

2
φ(2x, 2x, 0, · · · , 0)

for all x ∈ X. Then there exists a unique additive set-valued mapping
T : X → (Ccb(Y ), h) given by T (x) = limk→∞ 2kf( x

2k ) such that

(3.12) h(f(x), T (x)) ≤ L

(2n− 2)(1− L)
φ(x, x, 0, · · · , 0)

for all x ∈ X.

Proof. It follows from (3.5) that

(3.13) h
(f(2x)

2
, f(x)

)
≤ 1

2n− 2
φ(x, x, 0, · · · , 0)

for all x ∈ X. Then we obtain the linear mapping J from S to itself
with satisfying Jg(x) = 2f(x

2 ) for all x ∈ X. The rest of this proof is
similar to the proof of Theorem 3.2.

Corollary 3.5. Let θ ≥ 0, p > 1 be real numbers and X be a real
normed space. Suppose that f : X → Ccb(Y ) is a set-valued mapping
satisfying

(3.14) h
(
nf

( n∑

i=1

xi

)
,

n∑

i=1

f(xi)⊕
∑

1≤i<j≤n

f(xi + xj)
)
≤ θ

n∑

i=1

‖ xi ‖p

for all x1, x2, · · · , xn ∈ X, then there exists a unique additive set-valued
mapping T : X → Ccb(Y ) satisfying

h(f(x), T (x)) ≤ θ

(n− 1)(2p−1 − 1)
‖ x ‖p

for all x1, x2, · · · , xn ∈ X and x ∈ X.

Proof. We first take the function φ in Theorem 3.4 given by

φ(x1, x2, · · · , xn) := θ
n∑

k=1

‖ xk ‖p .
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Then by choosing L = 21−p, we get the desired result.
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