DOI QR코드

DOI QR Code

Recombinant Goat VEGF164 Increases Hair Growth by Painting Process on the Skin of Shaved Mouse

  • Bao, Wenlei (College of Life Science, Inner Mongolia University) ;
  • Yin, Jianxin (College of Life Science, Inner Mongolia University) ;
  • Liang, Yan (College of Life Science, Inner Mongolia University) ;
  • Guo, Zhixin (College of Life Science, Inner Mongolia University) ;
  • Wang, Yanfeng (College of Life Science, Inner Mongolia University) ;
  • Liu, Dongjun (College of Life Science, Inner Mongolia University) ;
  • Wang, Xiao (College of Life Science, Inner Mongolia University) ;
  • Wang, Zhigang (College of Life Science, Inner Mongolia University)
  • Received : 2014.01.21
  • Accepted : 2014.03.31
  • Published : 2014.09.01

Abstract

To detect goat vascular endothelial growth factor (VEGF)-mediated regrowth of hair, full-length VEGF164 cDNA was cloned from Inner Mongolia cashmere goat (Capra hircus) into the pET-his prokaryotic expression vector, and the recombinant plasmid was transferred into E. coli BL21 cells. The expression of recombinant $6{\times}his-gVEGF164$ protein was induced by 0.5 mM isopropyl thio-${\beta}$-D-galactoside at $32^{\circ}C$. Recombinant goat VEGF164 (rgVEGF164) was purified and identified by western blot using monoclonal anti-his and anti-VEGF antibodies. The rgVEGF164 was smeared onto the dorsal area of a shaved mouse, and we noted that hair regrowth in this area was faster than in the control group. Thus, rgVEGF164 increases hair growth in mice.

Keywords

References

  1. Carmeliet, P., V. Ferreira, G. Breier, S. Pollefeyt, L. Kieckens, M. Gertsenstein, M. Fahrig, A. Vandenhoeck, K. Harpal, C. Eberhardt, C. Declercq, J. Pawling, L. Moons, D. Collen, W. Risau, and A. Nagy. 1996. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435-439. https://doi.org/10.1038/380435a0
  2. Deng, M., H. Huang, H. Jin, O. Dirsch, and U. Dahmen. 2011. The anti-proliferative side effects of AEE788, a tyrosine kinase inhibitor blocking both EGF- and VEGF- receptor, are liver-size-dependent after partial hepatectomy in rats. Invest. New Drugs 29:593-606. https://doi.org/10.1007/s10637-010-9394-6
  3. Ferrara, N., H. P. Gerber, and J. LeCouter. 2003. The biology of VEGF and its receptors. Nat. Med. 9:669-676. https://doi.org/10.1038/nm0603-669
  4. Ferrara N. and W. J. Henzel. 1989. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161:851-858. https://doi.org/10.1016/0006-291X(89)92678-8
  5. Ford, K. M. and P. A. D'Amore. 2012. Molecular regulation of vascular endothelial growth factor expression in the retinal pigment epithelium. Mol. Vis. 18:519-527.
  6. Gordon, O., D. Gilon, Z. He, D. May, A. Lazarus, A. Oppenheim, and E. Keshet. 2012. Vascular endothelial growth factor-induced neovascularization rescues cardiac function but not adverse remodeling at advanced ischemic heart disease. Arterioscler. Thromb. Vasc. Biol. 32:1642-1651. https://doi.org/10.1161/ATVBAHA.112.248674
  7. Gospodarowicz, D., J. A. Abraham, and J. Schilling. 1989. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc. Natl. Acad. Sci. USAa. 86:7311-7315. https://doi.org/10.1073/pnas.86.19.7311
  8. Holmes, K., O. L. Roberts, A. M. Thomas, and M. J. Cross. 2007. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell. Signal. 19:2003-2012. https://doi.org/10.1016/j.cellsig.2007.05.013
  9. Jingjing, L., Y. Xue, N. Agarwal, and R. S. Roque. 1999. Human Muller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. Invest. Ophthalmol. Vis. Sci. 40:752-759.
  10. Li, W., Z. F. Lu, X. Y. Man, C. M. Li, J. Zhou, J. Q. Chen, X. H. Yang, X. J. Wu, S. Q. Cai, and M. Zheng. 2012a. VEGF upregulates VEGF receptor-2 on human outer root sheath cells and stimulates proliferation through ERK pathway. Mol. Biol. Rep. 39:8687-8694. https://doi.org/10.1007/s11033-012-1725-6
  11. Li, W., X. Y. Man, C. M. Li, J. Q. Chen, J. Zhou, S. Q. Cai, Z. F. Lu, and M. Zheng. 2012b. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK. Exp. Cell Res. 318:1633-1640. https://doi.org/10.1016/j.yexcr.2012.05.003
  12. Li, X. D., J. Chen, C. C. Ruan, D. L. Zhu, and P. J. Gao. 2012c. Vascular endothelial growth factor-induced osteopontin expression mediates vascular inflammation and neointima formation via Flt-1 in adventitial fibroblasts. Arterioscler. Thromb. Vasc. Biol. 32:2250-2258. https://doi.org/10.1161/ATVBAHA.112.255216
  13. Liu, Y., A. D. Berendsen, S. Jia, S. Lotinun, R. Baron, N. Ferrara, and B. R. Olsen. 2012. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J. Clin. Invest. 122:3101-3113. https://doi.org/10.1172/JCI61209
  14. Magnuson, J., F. Leonessa, and G. S. Ling. 2012. Neuropathology of explosive blast traumatic brain injury. Curr. Neurol. Neurosci. Rep. 12:570-579. https://doi.org/10.1007/s11910-012-0303-6
  15. Man, X. Y., X. H. Yang, S. Q. Cai, Z. Y. Bu, X. J. Wu, Z. F. Lu, and M. Zheng. 2009. Expression and localization of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 in human epidermal appendages: a comparison study by immunofluorescence. Clin. Exp. Dermatol. 34:396-401. https://doi.org/10.1111/j.1365-2230.2008.03104.x
  16. Olsson, A. K., A. Dimberg, J. Kreuger, and L. Claesson-Welsh. 2006. VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol. 7:359-371. https://doi.org/10.1038/nrm1911
  17. Ozeki, M. and Y. Tabata. 2002. Promoted growth of murine hair follicles through controlled release of vascular endothelial growth factor. Biomaterials 23:2367-2373. https://doi.org/10.1016/S0142-9612(01)00372-6
  18. Poltorak, Z., T. Cohen, R. Sivan, Y. Kandelis, G. Spira, I. Vlodavsky, E. Keshet, and G. Neufeld. 1997. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J. Biol. Chem. 272:7151-7158. https://doi.org/10.1074/jbc.272.11.7151
  19. Senger, D. R., L. Van de Water, L. F. Brown, J. A. Nagy, K. T. Yeo, T. K. Yeo, B. Berse, R. W. Jackman, A. M. Dvorak, and H. F. Dvorak. 1993. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev. 12:303-324. https://doi.org/10.1007/BF00665960
  20. Sitohy, B., J. A. Nagy, and H. F. Dvorak. 2012. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target. Cancer Res. 72:1909-1914. https://doi.org/10.1158/0008-5472.CAN-11-3406
  21. Sperling, L. C. 1991. Hair anatomy for the clinician. J. Am. Acad. Dermatol. 25:1-17. https://doi.org/10.1016/0190-9622(91)70167-Z
  22. Tischer, E., R. Mitchell, T. Hartman, M. Silva, D. Gospodarowicz, J. C. Fiddes, and J. A. Abraham. 1991. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem. 266:11947-11954.
  23. Whittle, C., K. Gillespie, R. Harrison, P. W. Mathieson, and S. J. Harper. 1999. Heterogeneous vascular endothelial growth factor (VEGF) isoform mRNA and receptor mRNA expression in human glomeruli, and the identification of VEGF148 mRNA, a novel truncated splice variant. Clin. Sci. (Lond). 97:303-312. https://doi.org/10.1042/CS19990016
  24. Wu, X. J., J. W. Zhu, J. Jing, D. Xue, H. Liu, M. Zheng, and Z. F. Lu. 2014. VEGF165 modulates proliferation, adhesion, migration and differentiation of cultured human outer root sheath cells from central hair follicle epithelium through VEGFR-2 activation in vitro. J. Dermatol. Sci. 73:152-160. https://doi.org/10.1016/j.jdermsci.2013.10.002
  25. Yano, K., L. F. Brown, and M. Detmar. 2001. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J. Clin. Invest. 107:409-417. https://doi.org/10.1172/JCI11317
  26. Zhang, Q. L., J. P. Li, Y. M. Li, Q. Chang, Y. Chen, H. Z. Jiang, Z. H. Zhao, and D. Guo. 2013. Expression and localization of the vascular endothelial growth factor and changes of microvessel density during hair follicle development of liaoning cashmere goats. Genet. Mol. Res. 12:6424-6432. https://doi.org/10.4238/2013.December.10.3

Cited by

  1. Does maternal exposure to artificial food coloring additives increase oxidative stress in the skin of rats? vol.36, pp.10, 2017, https://doi.org/10.1177/0960327116678297