DOI QR코드

DOI QR Code

A SIMPLE METHOD TO CALCULATE THE DISPLACEMENT DAMAGE CROSS SECTION OF SILICON CARBIDE

  • Received : 2013.06.25
  • Accepted : 2014.02.19
  • Published : 2014.08.25

Abstract

We developed a simple method to prepare the displacement damage cross section of SiC using NJOY and SRIM/TRIM. The number of displacements per atom (DPA) dependent on primary knock-on atom (PKA) energy was computed using SRIM/TRIM and it is directly used by NJOY/HEATR to compute the neutron energy dependent DPA cross sections which are required to estimate the accumulated DPA of nuclear material. SiC DPA cross section is published as a table in DeCART 47 energy group structure. Proposed methodology can be easily extended to other materials.

Keywords

References

  1. R.E. MacFarlane and A.C. Kahler, Methods for Processing ENDF/B-VII with NJOY, Nuclear Data Sheets 111, 2739-2890 (2010). https://doi.org/10.1016/j.nds.2010.11.001
  2. M.J. Norgett, M.T. Robinson, and I.M. Torrens, A Proposed Method of Calculating Displacement Dos Rates, Nucl. Eng. and Design 33, 50-54 (1975). https://doi.org/10.1016/0029-5493(75)90035-7
  3. D.M. Parkin and C. Alton Coulter, Displacement Cascades in Polyatomic Materials, J. of Nucl. Mat. 117, 340-344 (1983). https://doi.org/10.1016/0022-3115(83)90042-9
  4. L .R.Greenwood, SPECOMP Calculations of Radiation Damage in Compounds, Sixth ASTM-EURATOM Symposium on Reactor Dosimetry, Jackson Hole, Wy. USA, June 1-5, 1987. also L.R. Greenwood, ASTM STP 1001, 598 (1989).
  5. H.L. Heinish et al, Displacement damage in silicon carbide irradiated in fission reactors, J. of Nucl. Mat. 327, 175-181 (2004). https://doi.org/10.1016/j.jnucmat.2004.02.012
  6. J.F. Zeigler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, Pergamon, New York, 1985.
  7. J.F. Zeigler, SRIM-2000, Code and manuals available on http://www.srim.org/ (2001, 2013).
  8. S .J. Zinkle and C. Kinoshita, Defect production in ceramics, J. of Nucl. Mat. 251, 200-217 (1997). https://doi.org/10.1016/S0022-3115(97)00224-9
  9. R. Devanathan, W.J. Weber, and F. Gao, Atomic scale simulation of defect production in irradiated 3C-SiC, J. Appl. Phys. 90(5) 2303-2309 (2001). https://doi.org/10.1063/1.1389523
  10. G. Lucas and L. Pizzagalli, Ab initio molecular dynamics calculations of threshold displacement energies in silicon carbide, Phys. Rev. B 72, 161202 (2005). https://doi.org/10.1103/PhysRevB.72.161202
  11. W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133-1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  12. H. Huang and N. Ghoniem, Molecular dynamics calculations of defect energetics in b-SiC, J. Nucl. Mat. 212-215, 148-153 (1994). https://doi.org/10.1016/0022-3115(94)90046-9
  13. M.B. Chadwick et al., ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data, Nucl. Data Sheets 112(12) 2887-2996 (2011). https://doi.org/10.1016/j.nds.2011.11.002
  14. J.Y. Cho et al., DeCART2D v1.0 User's Manual, KAERI/ TR-5116/2013, Korea Atomic Energy Research Institute (2013).
  15. W.J. Lee et al., Fully Ceramic Micro-encapsulated (FCM) Replacement Fuel Assembly for LWRs, ICAPP 2013, Jeju Island, Korea, April 14-18, 2013 (2013).

Cited by

  1. Microstructure variation of CuZnAl alloy due to helium ions irradiation vol.5, pp.1, 2018, https://doi.org/10.1088/2053-1591/aaa333