DOI QR코드

DOI QR Code

Influencing factors for abrasive flow rate and abrasive flow quality of abrasive injection waterjet systems for tunnel excavation

터널굴착용 투입형 연마재 워터젯 시스템의 연마재 투입량과 유동성에 미치는 영향 인자

  • Joo, Gun-Wook (Department of Civil and Environmental Engineering, KAIST) ;
  • Oh, Tae-Min (Underground Space Department, KIGAM) ;
  • Cho, Gye-Chun (Department of Civil and Environmental Engineering, KAIST)
  • 주건욱 (KAIST, 건설및환경공학과) ;
  • 오태민 (한국지질자원연구원, 지하공간연구실) ;
  • 조계춘 (KAIST, 건설및환경공학과)
  • Received : 2014.07.09
  • Accepted : 2014.07.25
  • Published : 2014.07.31

Abstract

A new rock excavation method using an abrasive waterjet system is under development for efficiently creating tunnels and underground spaces in urban areas. In addition, an appropriate abrasive flow rate and abrasive flow quality are important for the new rock excavation (cutting) method using an abrasive waterjet system. This study evaluated the factors influencing the abrasive flow rate and abrasive flow quality, specifically the abrasive pipe height, length, tortuosity and inner diameter, through experimental tests. Based on the experimental test results, this study suggested optimal conditions for the abrasive flow rate and abrasive flow quality. The experimental results can be effectively utilized as baseline data for rock excavation methods using an abrasive waterjet system in various construction locations such as tunnels near urban surroundings, utility tunnels, and shafts.

도심지 내 지하공간의 효율적인 활용을 위해서 연마재 워터젯 시스템(abrasive waterjet system)을 이용한 새로운 형태의 암반굴착 공법이 개발되어 활용 중에 있다. 연마재 워터젯 시스템을 활용한 굴착(절삭) 수행 시 적정량의 연마재를 투입하고 연마재입자의 유동성을 원활하게 유지하는 것은 매우 중요하다. 본 연구에서는 실내실험을 통해 연마재 입자의 유동성과 관련된 영향인자들을 연마재 관 설치높이, 연마재 관 길이, 연마재 관 굴곡도 그리고 연마재 관 내경으로 나누어 연마재 투입량 및 유동성 수준을 평가하였다. 또한, 실험결과를 바탕으로 연마재 투입량 및 연마재 입자 유동성에 관한 최적 조건을 제시하였다. 본 연구결과를 바탕으로 향후 암반 굴착용 워터젯 공법이 도심지 내 터널, 공동구, 수직구 건설 등 다양한 지반 구조물 굴착 작업 시, 최적 연마재 투입을 위한 기초자료로 유용하게 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Aydin, G., Karakurt, I., Aydiner, K. (2011), "Performance optimization of abrasive waterjet technology in granite cutting." Proceeding of the American Water Jet Conference, Houston, U.S.A., Paper F2.
  2. Chalmers, E.J. (1991), "Effect of parameter selection on abrasive waterjet performance." Proceeding of the American Water Jet Conference, Houston, U.S.A., Paper 25.
  3. Daedeok Innopolis Foundation (2014), Development of Frame-rail based Waterjet Pre-cutting Equipment for Minimizing Blasting Vibration (at least 50% for Vertical Direction) on Tunnel, Final Report for Daedeok Innopolis Technology Commercialization Project, pp. 115-119.
  4. Hashish, M. (1984), "A modeling study of metal cutting with abrasive waterjets." Journal of Engineering Materials and Technology, 106, pp. 88-100. https://doi.org/10.1115/1.3225682
  5. Hashish, M. (2011), "AWJ cutting with reduced abrasive consumption." Proceeding of the American Water Jet Conference, Houston, U.S.A., Paper A4.
  6. Korea Institute of Science and Technology Information (KISTI) (2003), Research for application of high water pressure technology, KISTI technical report, pp. 1-13.
  7. Lee, C.I. (2012), "Application of Water Jet Technology to Industry-Current State, Research Trend and Prospect." the Korean Institute of Mineral and Energy Resources Engineers, Vol. 49, No. 2, pp. 226-238.
  8. Momber, A.W., Kovacevic, R. (2000), "Particle-size distribution influence in high-speed erosion of aluminium." Wear, 18, pp. 199-212.
  9. Oh, T.M. (2012), "Rock excavation using abrasive waterjet", Ph.D. Thesis, Korea Advanced Institute of Science and Technology, Dae-jeon, Republic of Korea, pp. 41-75.
  10. Oh, T.M., Cho, G.C. (2012a), "Effect of abrasive waterjet parameters on rock removal." Korean Tunnelling and Underground Space Association, Vol. 14, No. 4, pp. 421-435. https://doi.org/10.9711/KTAJ.2012.14.4.421
  11. Oh, T.M., Cho, G.C. (2012b), "Effect of geometric parameters of a combined nozzle for rock cutting using an abrasive waterjet." Korean Tunnelling and Underground Space Association, Vol. 14, No. 5, pp. 517-528. https://doi.org/10.9711/KTAJ.2012.14.5.517
  12. Oh, T.M., Cho, G.C., Ji, I.T. (2013), "Effects of free surface using waterjet cutting for rock blasting excavation." Korean Tunnelling and Underground Space Association, Vol. 15, No. 1, pp. 49-57. https://doi.org/10.9711/KTAJ.2013.15.1.049
  13. Oh, T.M., Cho, G.C. (2014), "Characterization of effective parameters in abrasive waterjet rock cutting." Rock Mechanics and Rock Engineering, Vol. 47, No. 2, pp. 745-756. https://doi.org/10.1007/s00603-013-0434-3
  14. Summers, D.A. (1995), Waterjetting Technology, E & FN Spon, pp. 419-468.
  15. Sunwoo, C., Choi, B.H., Ryu, C.H. (1994), "A study on the slot cutting in granite by high speed water jet." Korean Society for Rock Mechanics, Vol. 4, No. 2, pp. 92-101.
  16. Woodward, M.J. (1993), "Water soluble abrasives." Proceeding of the American Water Jet Conference, Seattle, U.S.A., Paper 28.
  17. Wright, D.E., Summers, D.A. (1993), "Performance enhancement of diadrill operations." Proceeding of the American Water Jet Conference, Seattle, U.S.A., Paper 39.

Cited by

  1. Variation of abrasive feed rate with abrasive injection waterjet system process parameters vol.17, pp.2, 2015, https://doi.org/10.9711/KTAJ.2015.17.2.141