• Title/Summary/Keyword: abrasive flow rate

Search Result 38, Processing Time 0.033 seconds

Influencing factors for abrasive flow rate and abrasive flow quality of abrasive injection waterjet systems for tunnel excavation (터널굴착용 투입형 연마재 워터젯 시스템의 연마재 투입량과 유동성에 미치는 영향 인자)

  • Joo, Gun-Wook;Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.417-430
    • /
    • 2014
  • A new rock excavation method using an abrasive waterjet system is under development for efficiently creating tunnels and underground spaces in urban areas. In addition, an appropriate abrasive flow rate and abrasive flow quality are important for the new rock excavation (cutting) method using an abrasive waterjet system. This study evaluated the factors influencing the abrasive flow rate and abrasive flow quality, specifically the abrasive pipe height, length, tortuosity and inner diameter, through experimental tests. Based on the experimental test results, this study suggested optimal conditions for the abrasive flow rate and abrasive flow quality. The experimental results can be effectively utilized as baseline data for rock excavation methods using an abrasive waterjet system in various construction locations such as tunnels near urban surroundings, utility tunnels, and shafts.

Effect of Rotating Speed and Air Flow Rate on Material Removal Characteristics in Abrasive Fluidized Bed Machining of Polyacetal (폴리아세탈의 입자유동베드 가공에서 회전속도와 공기 유량이 재료제거 특성에 미치는 영향)

  • Jang, Yangjae;Kim, Taekyoung;Hwang, Heondeok;Seo, Joonyoung;Lee, Dasol;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.214-219
    • /
    • 2017
  • Abrasive fluidized bed machining (AFBM) is similar to general abrasive fluidized machining (AFM) in that it can perform polishing of the outer and inner surfaces of a 3-dimensional shape by the flow of particles. However, in the case of AFM, the shear force generated by the flow of the particles causes material removal, while in AFBM, the abrasive particles are suspended in the chamber to form a bed. AFBM can be used for deburring, polishing, edge contouring, shot peening, and cleaning of mechanical parts. Most studies on AFBM are limited to metals, and research on application of AFBM to plastic materials has not been performed yet. Therefore, in this study, we investigate the effect of rotating speed of the specimen and the air flow rate on the material removal characteristics during AFBM of polyacetal with a horizontal AFBM machine. The material removal rate (MRR) increases linearly with increase of the rotating speed of the main shaft because of the shear force between the particles of the fluidized bed and the rotation of the workpiece. The reduction in surface roughness tends to increase as the rotating speed of the main shaft increases. As the air flow rate increases, the MRR tends to decrease. At a flow rate of 70 L/min or more, the MRR remains almost constant. The reduction of the surface roughness of the specimen is found to decrease with increasing air flow rate.

Effect on the Deburring of Spring Collet Burr by Abrasive Flow System (입자유동시스템에 의한 스프링콜릿 버의 디버링 효과)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.192-197
    • /
    • 1998
  • Abrasive flow machining is useful to abrasive polish a internal or external surface of the free shape dimensional parts, which are used in many fields such as machine tool parts, semi-conductor, and medical component industries. The machining process is that two hydraulic cylinders, which are located surface to surface, are enforce media to the passage between workpiece and tooling part alternately, and then the abrasives included in the media pass the passage and polish the surface of workpiece. The media which is made of polymer and abrasive plays complex have workpiece by its viscoelastic characteristics. In this study, the media for AMF was made by mixing viscoelastic polymer with alumina and silicon carbide abrasive respectively. As a result, alumina include media is also the experiments of deburring the inside burr of in order to analyse the deburring machinability of abrasive flow machining according to various machining parameters which were media flow rate extrusion pressure, passage gap, media viscosity, abrasive content, and abrasive grain size.

  • PDF

Improvement of the Blasting Productivity by Optimizing the Abrasive-to-Air Mixing Ratio (Grit와 Air의 혼합비 최적화를 통한 블라스팅 효율 향상)

  • Bae, Han-Jin;Baek, Jae-Jin;Kim, Eul-Hyun;Chung, Mong-Ku;Shin, Chil-Seok;Baek, Kwang-Ki
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1436-1441
    • /
    • 2004
  • Achieving the maximum blasting efficiency with minimum abrasive consumption is a critical concern in surface preparation stage of shipbuilding and offshore industry. Increasing the abrasive flow rate beyond the optimum point results in a major reduction in productivity even though the amount of abrasive used is larger. So, this study is intend to find out the optimum abrasive-to-air mixing ratio which can make a significant improvement in blasting efficiency and remarkably reduce the amount of abrasive used. From the test results, it can be identified that as the abrasive feeding rate is increased linearly, blasting efficiency is increased to a maximum point and then gradually decreased in the form of a bell-shaped.

  • PDF

Modeling of Depth/Width of Cut for Abrasive Water Jet Milling of Titanium (티타늄의 워터젯 밀링을 위한 가공깊이/폭 모델링)

  • Park, Seung Sub;Kim, Hwa Young;Ahn, Jung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.83-88
    • /
    • 2016
  • Because of the increasing tool cost for cutting hard-to-cut materials, abrasive water jet (AWJ) milling recently has been regarded as a potential alternative machining method. However, it is difficult to control the depth and width of cut in AWJ milling because they vary depending on many AWJ cutting parameters. On 27 conditions within a limited range of pressure, feed rate, and abrasive flow rate, AWJ cutting was conducted on titanium, and depth profiles were measured with a laser sensor. From the depth profile data, depth and width of cut were acquired at each condition. The relationships between depth and parameters and between width and parameters were derived through regression analysis. The former can provide proper cutting conditions and the latter the proper pick feed necessary to generate a milled surface. It is verified that pressure mostly affects depth, whereas abrasive flow rate mostly affects width.

Simulation analysis and evaluation of decontamination effect of different abrasive jet process parameters on radioactively contaminated metal

  • Lin Zhong;Jian Deng;Zhe-wen Zuo;Can-yu Huang;Bo Chen;Lin Lei;Ze-yong Lei;Jie-heng Lei;Mu Zhao;Yun-fei Hua
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3940-3955
    • /
    • 2023
  • A new method of numerical simulating prediction and decontamination effect evaluation for abrasive jet decontamination to radioactively contaminated metal is proposed. Based on the Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) coupled simulation model, the motion patterns and distribution of abrasives can be predicted, and the decontamination effect can be evaluated by image processing and recognition technology. The impact of three key parameters (impact distance, inlet pressure, abrasive mass flow rate) on the decontamination effect is revealed. Moreover, here are experiments of reliability verification to decontamination effect and numerical simulation methods that has been conducted. The results show that: 60Co and other homogeneous solid solution radioactive pollutants can be removed by abrasive jet, and the average removal rate of Co exceeds 80%. It is reliable for the proposed numerical simulation and evaluation method because of the well goodness of fit between predicted value and actual values: The predicted values and actual values of the abrasive distribution diameter are Ф57 and Ф55; the total coverage rate is 26.42% and 23.50%; the average impact velocity is 81.73 m/s and 78.00 m/s. Further analysis shows that the impact distance has a significant impact on the distribution of abrasive particles on the target surface, the coverage rate of the core area increases at first, and then decreases with the increase of the impact distance of the nozzle, which reach a maximum of 14.44% at 300 mm. It is recommended to set the impact distance around 300 mm, because at this time the core area coverage of the abrasive is the largest and the impact velocity is stable at the highest speed of 81.94 m/s. The impact of the nozzle inlet pressure on the decontamination effect mainly affects the impact kinetic energy of the abrasive and has little impact on the distribution. The greater the inlet pressure, the greater the impact kinetic energy, and the stronger the decontamination ability of the abrasive. But in return, the energy consumption is higher, too. For the decontamination of radioactively contaminated metals, it is recommended to set the inlet pressure of the nozzle at around 0.6 MPa. Because most of the Co elements can be removed under this pressure. Increasing the mass and flow of abrasives appropriately can enhance the decontamination effectiveness. The total mass of abrasives per unit decontamination area is suggested to be 50 g because the core area coverage rate of the abrasive is relatively large under this condition; and the nozzle wear extent is acceptable.

Variation of abrasive feed rate with abrasive injection waterjet system process parameters (연마재 투입형 워터젯 시스템의 공정 변수에 따른 연마재 투입량 변화)

  • Joo, Gun-Wook;Oh, Tae-Min;Kim, Hak-Sung;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.141-151
    • /
    • 2015
  • A new rock excavation method using an abrasive injection waterjet system has been developed to enhance the efficiency and reduce the vibration of tunnel excavation. The abrasive feed rate is an important factor for the cutting performance and the economical efficiency of waterjet-based excavation. In this study, various experiments were performed to explore the effects of major process parameters for both the abrasive feed rate and the suction pressure occurring inside the mixing chamber when the abrasives are inhaled. Experimental results reveal that the abrasive feed rate is affected by geometry parameters (abrasive pipe height, length, and tortuosity), abrasive parameters (abrasive particle size), and jet energy parameters (water pressure and water flow rate). In addition, the relation between the cutting performance and the abrasive feed rate was discussed on the basis of the results of an experimental study. The cutting performance can be maximized when the abrasive feed rate is controlled appropriately via careful management of major process parameters.

Comparison of cutting performance of an AWJ with several types of abrasives (Water jet 절단에서의 연마재 종류별 성능 비교 시험)

  • Choon Sunwoo;;Ryu Chang ha;Kwng soo Kwon
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.175-183
    • /
    • 1996
  • Linear cutting tests on granite were conducted to evaluated the cutting performance of abrasive water jet(AWJ) using several types of abrasives. The abrasives used in the tests were grarnet, alumimum oxide, and silicon carbide. And one type of granite which is comercially known as "KeuchangSuk" was used as workpiece throughout the tests. The results from the tests were described in terms of cutting depth and abrasive productivity. Authors tried to confirm the effects of the operational parameters of abrasive mass flow rate, water pressure, and traverse speed of nozzle on cutting depth and presented almost all the data obtained in the tests. Abrasive productivity can be defined as the area of kerf wall cut by unit weight of abrasive and is an important factor to evaluated the cutting ability of abrasive and assess the cost effectiveness of an AWJ system. In the tests the maximum abrasive productivities of garnet, alumina, and silicon carbide were about 0.21, 0.24, and 0.20 $\textrm{cm}^2$ respectively under similar operational conditions.onditions.

  • PDF

Experimental study for the process conditions of abrasive jet machining by Taguchi method (Taguchi 실험계획법을 이용한 미세입자 분사가공조건 획득에 관한 연구)

  • 박동진;이인환;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.379-382
    • /
    • 2004
  • Abrasive jet machining (AJM) has a large number of parameters such as powder flow rate, air pressure, diameter of abrasive, stand off distance, material hardness and fracture toughness, etc. It is not easy matter to control those parameter. To achieve high accurate machining, in this study, Taguchi method was used to select process parameters. The objective of the optimization was to get higher material removal rate (MRR). From the experiments and analysis, some process parameters were found to make efficient machining.

  • PDF

An experimental study of cutting abilities of an abrasive water jet system (연마제 혼합액 제트의 절단 성능에 관한 연구)

  • 안영재;유장열;권오관;김영조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.611-617
    • /
    • 1989
  • A jet cutting system is a new concept of cutting device wihch requires high pressure up to thousands of atmospheric pressure. The use of water as a cutting medium brings in many of working advantages such as no dust, no gas, and no thermal distortion. And an introduction of abrasives into the water jet flow increases signigicantly cutting abilities and improves cutting performance. Cutting with abrasive water jet involves many operating variables, including design of the cutting system. For efficient cutting, the operating parameters have to chosen properly. In spite of several attempts to develop the cutting model theoretically, all of the optimization of the operating parameters is based upon exerimental results of each jet cutting system. In this paper, the effect of the parameters was measured and analysed in terms of pressure, abrasive, and transverse rate of a workpiece. Most of all, sufficient feeding of abrasives is the most important factor for efficient cutting performance.