DOI QR코드

DOI QR Code

Petrological and Mineralogical Characteristics and Firing Temperature of Pottery in the 5-6th Century from Changnyeong, Gyeongsangnamdo

경상남도 창녕에서 출토된 5-6세기 토기의 암석광물학적 특성 연구 및 소성온도 추정

  • Received : 2014.03.05
  • Accepted : 2014.06.16
  • Published : 2014.06.30

Abstract

This study is conducted to investigate mineralogical characteristics and estimate firing temperature and condition of earthenwares in the 5-6th Century which are found at ancient tombs in Gyo-dong, Gyo-ri, Changnyeong-eup, Changnyeong-gun, Gyeongsangnam-do, TKorea by applying petrological methods. For this study, mineralogical analysis, microtexture observation and chemical analysis were conducted. According to observations using a polarization microscope, the potshreds are mainly composed of quartz and feldspar and consist of some felsic volcanics, tempers, opaques and mullite, hematite and spinel were found under XRD and FTIR analysis. The flow pastes are observed in many potshreds, and it indicate that this textures made by the mixing process or the pottery made from the mixture of 2 sorts of clays at least. They dose not show the features of the potshreds firing under temperature of $1,200-1,300^{\circ}C$ rather than the earthenware firing under relatively low temperature of $1,000^{\circ}C$ approximately because of the existence of a number of pores and the crystals of the specific minerals. The growths mostly of mullite on the surface and into the cracks of the potshreds indicate that the firing condition was not uniform to make even temperature and oxidation. Most of the pottery shreds have felsic volcanic fragments and some of them have cristobalite which is formed at the temperature of more than 1,470^{\circ}C$. But considering the estimated firing temperature, these are not formed during firing but included in the original clay.

본 연구에서는 경상남도 창녕군 창녕읍 교리 고분군 일대에서 발견된 5세기~6세기 초반 무렵의 삼국시대 토기를 대상으로 암석학적 연구방법을 적용하여 광물학적 특징과 소성온도 및 환경을 추정하였다. 이를 위하여 광물학적 동정과 미세조직관찰, 화학성분 분석 등의 다양한 기법을 적용하여 암석광물학적 분석을 시행하였다. 편광현미경 하에서 토기 시료들을 관찰한 결과 석영, 장석류가 주구성 광물이었으며, 그 외에도 규장질 화산암(felsic volcanics), 비짐(temper), 저급점토에 주로 함유되는 불투명광물 등이 관찰되었다. XRD와 FTIR을 통해 현미경으로 볼 수 없었던 멀라이트, 적철석, 스피넬 등이 관찰되었다. 조사된 토기시편에서 보이는 흐름선과 색이 다른 기질이 혼재는 두 가지 이상의 점토를 사용하였거나 반죽과정에서 생긴 것으로 보인다. 소성온도가 $1,200-1,300^{\circ}C$로 제작된 토기에서 관찰되는 일반적인 석기의 특징은 보이지 않으나 다소의 기공이 존재하고 석영을 비롯한 특정 광물들의 결정이 남아 있는 것으로 보아 소성온도는 $1,000^{\circ}C$ 정도에서 소성되었을 것이라 추정된다. 고온광물인 멀라이트가 토기의 내부보다는 외곽부나 균열 부근에서 주로 관찰되며 토기 내외부의 산화정도가 다른 것은 균질한 소성환경이 조성되지 않았음을 의미한다. 대부분의 시료에서 규장질 화산암편이 관찰되고 일부 시료에서 크리스토발라이트가 관찰되는데, 크리스토발라이트의 형성온도가 일반적으로 1,470^{\circ}C$ 이상임을 감안하면 소성 시 생성된 것이 아니라 원래의 태토 내에 포함되어 있던 것으로 추정된다.

Keywords

References

  1. Abbott, D.R., Lack, A.D., and Hackbarth, M.R. (2008) Provenance and Microprobe Assays of Phyllite- Tempered Ceramics from the Uplands of Central Arizona. Geoarchaeology. Geoarchaeology, 23, 213-242. https://doi.org/10.1002/gea.20212
  2. Choi, M.L. (1981) Analysis of Plain Coarse Pottery from Cholla Province, and the Implication for Ceramic Technology and so-called Yeongsan River Valley Culture Area. The Korean Archaeological Society, 10-11, 261-276.
  3. Choi, M.L., Shin, S.J., and Lee, D.Y. (1996) Archaeology and Nature Science - Pottery. Seoul National University Press, 504p.
  4. Gim, R.H., Lee, S.M., Jang, S.Y., and Lee, C.H. (2009) Interpretation of Firing Temperature and Material Characteristics of the Potteries Excavated from the Nongseori Site in Giheung, Korea. Journal of Conservation Science, 25, 255-271.
  5. Jang, S.Y., Moon, E.J., Lee, C.H., and Lee, G.G. (2012) Production Characteristics and Post-depositional Influence of Iron Age Pottery from Chipyeongdong Site in Gwangju, Korea. Economic and Environmental Geology, 45, 157-167. https://doi.org/10.9719/EEG.2012.45.2.157
  6. Jang, S.Y., Lee, G.G., Moon, H.S., and Lee, C.H. (2009) Interpretation of Material Provenance and Production Techniques of Pottery and Kilns from Gundong and Majeon Sites in the 3rd Century at Yeonggwang, Korea. Journal of Conservation Science, 25, 101-114.
  7. Kim, J.Y., Park, J.Y., Park, D.S., and Lee, C.H. (2010) Material Characteristics and Clay Source Interpretation of Crucible in Baekje Kingdom Excavated from the Ssangbukri Site in Buyeo, Korea. Journal of Conservation Science, 26, 1.
  8. Kim, K.W. and Lee, Y.J. (1969) Geologic map of Korea, Changnyeong sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources.
  9. Kim, N.J. and Lee, H.K. (1964) Geologic map of Korea, Yeongsan sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources.
  10. Kim, R.H., Lee, S.M., Jang, S.Y., and Lee, C.H. (2009) Interpertation of Firing Temperature and Material Characteristics of the Potteries Excavated from the Nongseori Site in Gigeung, Korea. Journal of Conservation Science, 25, 255-271.
  11. Lee, H.M., Yang, D.Y., Koo, J.J., Kim, J.Y., Han, C.H., and Choi, S.W. (2004) Manufacturing Techniques and Provenance of Earthen Wares in Daecheonri Prehistory Site of Okcheon Country, Korea. The Korean Journal of Quaternary Research, 18, 1-20.
  12. Lee, M.S., Lee, G.J., and Lee, C.H. (2005) Archaeological Analysis and Interpretation of the Pottery from the Jagaeri Prehistoric Site, Dangjin, Korea. Journal of Conservation Science, 166-171.
  13. Lee, W.E., Souza, G.P., McConville, C.J., Tarvornpanich, T., and Iqbal, Y. (2007) Mullite formation in clays and clay-derived vitreous ceramics. Journal of the European Ceramic Society, 28, 465-471.
  14. Palanivel, R. and Kumar, U.R. (2009) Thermal and Spectroscopic Analysis of Ancient Potteries. Romanian Journal of Physics, 56, 195-208.
  15. Palanivel, R. and Kumar, U.R. (2011) The minera logical and fabric analysis of ancient pottery artifacts. Ceramica, 57, 56-62. https://doi.org/10.1590/S0366-69132011000100008
  16. Ravisankar, R., Kiruba, S., Eswaran, G., and Chandrasekaran, A. (2010) Mineralogical Characterization Studies of Ancient Potteries of Tamilnadu, India by FT-IR Spectroscopic Technique. E-Journal of Chemistry, 7, 185-190. https://doi.org/10.1155/2010/623298
  17. Rice, P.M. (1996) Recent Ceramic Analysis: 1. Function, Style, and Origins. Jounal of Archaeological Research, 4, 133-163. https://doi.org/10.1007/BF02229184
  18. Rutherford, J.S., Almond, M.J., and Nunn, P.D. (2012) Analysis of pottery samples from Bourewa, the earliest known Lapita site in Fiji. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 85, 155-159. https://doi.org/10.1016/j.saa.2011.09.050
  19. Schiffer, M.B. and Skido, J.M. (1987) Theory and Experiment in the Study of Technological Change. Current Anthropology, 28, 595-622. https://doi.org/10.1086/203601
  20. Velraj, G. et al. (2008) Estimation of firing temperature of some archaeological pottery shreds excavated recently in Tamilnadu, India, Spectrochimica Acta Part A. Molecular and Biomolecular Spectroscopy, 72, 730-733.
  21. Yu, H.J. and Yun, Y.Y. (2001) Easy History of Korean Pottery. Hakgojae, 76p.

Cited by

  1. Study on Mineralogical Characteristics and Firing Condition of the 4-6th Century Earthenware Excavated from the Seonggok-ri, Cheongdo-gun, Gyeongsangbuk-do vol.29, pp.3, 2016, https://doi.org/10.9727/jmsk.2016.29.3.123
  2. 라오스 홍낭시다 유적 출토 갈유도기와 기와의 원료특성과 제작기술 해석 vol.32, pp.4, 2014, https://doi.org/10.9727/jmsk.2019.32.4.273