DOI QR코드

DOI QR Code

Solid Phase Synthesis of Lysine-exposed Peptide-Polymer Hybrids by Atom Transfer Radical Polymerization

ATRP를 이용한 Lysine 말단기를 가진 펩타이드-고분자 하이브리드 합성

  • Ha, Eun-Ju (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Mijin (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Jinku (Department of Bio and Chemical Engineering, Hongik University) ;
  • An, Seong Soo A. (Department of BioNano Technology and School of Medicine, Gachon University) ;
  • Paik, Hyun-Jong (Department of Polymer Science and Engineering, Pusan National University)
  • 하은주 (부산대학교 고분자공학과) ;
  • 김미진 (부산대학교 고분자공학과) ;
  • 김진구 (홍익대학교 바이오화학공학과) ;
  • 안성수 (가천대학교 바이오나노학과) ;
  • 백현종 (부산대학교 고분자공학과)
  • Received : 2014.04.14
  • Accepted : 2014.06.05
  • Published : 2014.07.25

Abstract

Recently, the peptide(or protein)-polymer hybrid materials (PPs) were sought in many research areas as potential building blocks for assembling nanostructures in selective solvents. In PPs, the facile routes of preparing well-defined peptide-polymer bio-conjugates and their specific activities in various applications are important issues. Our strategy to prepare the peptide-polymer hybrid materials was to combine atom transfer radical polymerization (ATRP) method with solid phase peptide synthesis. The standard solid phase peptide synthesis method was employed to prepare the PYGK (proline-tyrosine-glycine-lysine) peptide. PYGK is an analogue peptide, PFGK (proline-phenylalanine-glycine-lysine), which interacted with plasminogen in fibrinolysis. The peptide and the peptide-initiator were characterized with MALDI-TOF mass spectrometry and $^1H$ NMR spectrometer. The peptide-polymer, pSt-PYGK was characterized by GPC, IR, $^1H$ NMR spectrometer and TLC. Spherical micellar aggregates were determined by TEM and SEM. Current synthesis methodology suggested opportunities to create the well-defined peptide-polymer hybrid materials with specific binding activity.

펩타이드-고분자 하이브리드 소재(PPs)들은 선택적 용매에서 나노구조 형성을 위한 잠재적 구성 요소로서 많은 연구분야에 이용되고 있다. PPs는 잘 정의된 펩타이드-고분자로 이루어진 바이오콘주게이트의 손쉬운 제조방법과 다양한 응용분야에서 이들의 고유활성도에 대한 연구는 중요한 이슈이다. 본 연구에서는 atom transfer radical polymerization(ATRP)와 고체상 펩타이드 합성법을 이용하여 펩타이드-고분자 하이브리드 소재를 제조하였다. PYGK(proline-tyrosine-glycine-lysine) 펩타이드를 제조하기 위하여 일반적인 고체상 펩타이드 합성법을 이용하였다. PYGK 펩타이드는 섬유소용해(fibrinolysis) 과정에서 플라스미노젠과 반응하는 PFGK(proline-phenylalanine-glycine-lysine)와 유사한 펩타이드이다. 펩타이드와 펩타이드 개시제는 MALDI-TOF와 $^1H$ NMR을 이용하여 분석하였다. 펩타이드-고분자인 pSt-PYGK는 GPC, IR, $^1H$ NMR 분석법, 그리고 TLC를 이용하여 분석하였다. 구형 마이셀 집합체는 TEM과 SEM으로 측정하였다. 본 합성방법은 고유결합 활성도를 가진 잘 정의된 펩타이드-고분자 하이브리드 소재를 합성할 수 있는 기회를 제공한다.

Keywords

References

  1. I. W. Hamley, A. Ansari, V. Castelletto, H. Nuhn, A. Rosler, and H. A. Klok, Biomacromolecules, 6, 1310 (2005). https://doi.org/10.1021/bm049286g
  2. J. Rodriguez-Hernandez, F. Checot, Y. Gnanou, and S. Lecommandoux, Prog. Polym. Sci., 30, 691 (2005). https://doi.org/10.1016/j.progpolymsci.2005.04.002
  3. D. J. Siegwart, J. K. Oh, and K. Matyjaszewski, Prog. Polym. Sci., 37, 18 (2012). https://doi.org/10.1016/j.progpolymsci.2011.08.001
  4. Y. Mei, K. L. Beers, H. C. M. Byrd, D. L. Vanderhart, and N. R. Washburn, J. Am. Chem. Soc., 126, 3472 (2004). https://doi.org/10.1021/ja039583d
  5. F. Checot, S. Lecommandoux, Y. Gnanou, and H. A. Klok, Angew. Chem. Int. Ed., 41, 1339 (2002). https://doi.org/10.1002/1521-3773(20020415)41:8<1339::AID-ANIE1339>3.0.CO;2-N
  6. H. Schlaad, B. Smarsly, and M. Losik, Macromolecules, 37, 2210 (2004). https://doi.org/10.1021/ma035819m
  7. M. L. Becker, J. Liu, and K. L, Wooley, Biomacromolecules, 6, 220 (2005). https://doi.org/10.1021/bm049551y
  8. A. S. Mikhail and C. Allen, J. Control. Release, 138, 214 (2009). https://doi.org/10.1016/j.jconrel.2009.04.010
  9. H. J. Yoon and W. D. Jang, J. Mater. Chem., 20, 211 (2010). https://doi.org/10.1039/b910948j
  10. G. W. M. Vandermeulen, C. Tziatzios, R. Duncan, and H. A. Klok, Macromolecules, 38, 761 (2005). https://doi.org/10.1021/ma0485538
  11. A. Rosler, H. A. Klok, I. W. Hamley, V. Castelletto, and O. O. Mykhaylyk, Biomacromolecules, 4, 859 (2003). https://doi.org/10.1021/bm034058s
  12. M. L. Becker, J. Liu, and K. L. Wooley, Chem. Commun., 180 (2003).
  13. I. Hamley, I. Ansari, V. Castelletto, H. Nuhn, A. Rosler, and H. A. Klok, Biomacromolecules, 6, 1310 (2005). https://doi.org/10.1021/bm049286g
  14. J. Rodriguez-Hernandez, F. Checot, Y. Gnanou, and S. Lecommandoux, Prog. Polym. Sci., 30, 691 (2005). https://doi.org/10.1016/j.progpolymsci.2005.04.002
  15. A. Taubert, A. Napoli, and W. Meier, Curr. Opin. Chem. Biol., 8, 598 (2004). https://doi.org/10.1016/j.cbpa.2004.09.008
  16. M. G. J. Ten Cate, N. Severin, and H. G. Borner, Macromolecules, 39, 7831 (2006). https://doi.org/10.1021/ma061738p
  17. M. G. J. Ten Cate, H. Rettig, K. Bernhardt, and H. G. Borner, Macromolecules, 38, 10643 (2005). https://doi.org/10.1021/ma0519415
  18. B. Le Droumaguet and J. Nicolas, Polym. Chem., 1, 563 (2010). https://doi.org/10.1039/b9py00363k
  19. K. Matyjaszewski and N. V. Tsarevsky, Nat. Chem., 1, 276 (2009). https://doi.org/10.1038/nchem.257
  20. J. Nicolas, G. Mantovani, and D. M. Haddleton, Macromol. Rapid Commun., 28, 1083 (2007). https://doi.org/10.1002/marc.200700112
  21. S. Dehn, R. Chapman, K. A. Jolliffe, and S. Perrier, Polym. Rev., 51, 214 (2011). https://doi.org/10.1080/15583724.2011.566404
  22. M. N. Triba, M. Traikia, D. E. Warschawski, L. Nicolas- Morgantini, A. Lety, P. Gilard, and P. F. Devaux, J. Colloid Interface Sci., 274, 341 (2004). https://doi.org/10.1016/j.jcis.2004.01.013
  23. L. Brecker, Chem. Phys. Lipids, 125, 27 (2003). https://doi.org/10.1016/S0009-3084(03)00055-0
  24. D. R. Iyengar and T. J. McCarthy, Macromolecules, 23, 4344 (1990). https://doi.org/10.1021/ma00222a002
  25. S. M. Lee, Z. C. Xing, Y. S. Shin, T. H. Gu, B. H. Lee, M. W. Huh, and I. K. Kang, Polymer(Korea), 36, 586 (2012).