DOI QR코드

DOI QR Code

Synthesis of Naphthalimidopropyl Acrylate and GMA Copolymers and Their Physical Properties

나프탈이미도프로필 아크릴레이트와 GMA 공중합체의 합성과 물성

  • Lim, Deok Jum (Dept. of Industrial Chemistry, Pukyoung National University) ;
  • Oh, Seung Min (Ulsan Girl's High School) ;
  • Kim, Boo Yoon (Det. of Mathematic Education, Pusan National University) ;
  • Park, Jae Kyung (Dept. of Nanoengeering, Kyungpook National University) ;
  • Kang, Inn-Kyu (Dept. of Polymer Science & Engeneering, Kyungpook National University) ;
  • Seo, Kwan-Ho (Dept. of Polymer Science & Engeneering, Kyungpook National University) ;
  • Oh, Dae Hee (Ulsan Girl's High School)
  • Received : 2014.03.07
  • Accepted : 2014.05.29
  • Published : 2014.07.25

Abstract

This work, which was about the synthesis of naphthalimidopropyl acrylate and GMA copolymers and their physical properties, investigated the compositions of the copolymer, the reactivity ratios of the monomer, resonance effect (Q), polar effect (e) and fluorescence of naphthalene. Azobisisobutyronitronitryl (AIBN) as an initiator was employed at $60^{\circ}C$ with dimethylformamide (DMF) of solvent for the copolymerization of NIPA. $r_1$ was found to be higher than $r_2$ from the reactivity ratios of the monomer obtained from Fineman-Ross (F-R), Kelen-$T{\ddot{u}}d{\ddot{o}}s$(K-T) methods. NIPA was found to be more copolymerized than GMA. $r_1{\cdot}r_2$ product was lower than 1, copolymerization was maked random-alternating type. The fluorescence spectrum of these polymers showed a weak monomer fluorescence band at 380 nm and a strong excimer fluorescence band at about 460 nm. Fluorescence life time of NIPA monomer showed fluorescence cover with UV 355 nm at room temperature, and life time showed $5.1449{\times}10^{-7}s$.

이 논문은 napthalimidopropylacrylate(NIPA)와 glycidylmethacrylate(GMA) 공중합체의 합성과 물성에 관한 연구로서 공중합체의 조성, 단량체 반응성비, 공명효과(Q)와 극성효과(e), 나프탈렌발색단을 가진 물질의 형광특성 등을 조사하였다. Azobisisobutyronitronitryl(AIBN) 개시제와 dimethylformamide(DMF) 용매를 $60^{\circ}C$에서 공중합하였다. 단량체의 반응성비는 Fineman-Ross(F-R), Kelen-$T{\ddot{u}}d{\ddot{o}}s$(K-T) 법으로 단량체 반응성비를 구한바, $r_1$$r_2$보다 크게 나타났다. NIPA이 GMA보다 공중합의 형성이 더 많음을 알 수 있다. 단량체 반응성비의 곱($r_1{\cdot}r_2$)이 1보다 적어서 불규칙한 교대공중합체가 형성되었고 다른 단량체끼리 결합하게 된 교호공중합체를 형성된 것으로 간주된다. 380 nm에서 약한 분자 형광띠와 460 nm에서 강한 중합체 엑시머 형광띠가 나타났다. NIPA 단량체의 형광수명은 실온에서 UV 355 nm 파장에서 형광붕괴커브를 나타냈으며 $5.1449{\times}10^{-7}s$로 나타났다. GMA 공단량체를 아크릴계에 공중합시켜 우수한 내열성 열경화성 접착제나 코팅제에 응용될 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 부경대학교

References

  1. I. Grabchcv, P. Mcallicr, T. N. Konstantinova, and M. Popoua, Dyes Pigm., 41, 28 (1995).
  2. V. Wintgens, P. Valat, J. Kossanyi, L. Biczok, A. Demetr, and T. Berces, J. Chem. Soc. Faraday Trans., 90, 411 (1994). https://doi.org/10.1039/ft9949000411
  3. J.-X. Yang, X.-L. Wang, X.-M. Wang, and L.-H. Xu, Dyes Pigm., 66, 83 (2005). https://doi.org/10.1016/j.dyepig.2004.07.015
  4. Q. Xuhong, Z. Zhenghua, and C. Kongchang, Dyes Pigm., 11, 13 (1989). https://doi.org/10.1016/0143-7208(89)85022-3
  5. T. Z. Filipova, I. Grabchev, and I. Petkov, J. Polym. Sci., Part A: Polym. Chem., 35, 1069 (1997). https://doi.org/10.1002/(SICI)1099-0518(19970430)35:6<1069::AID-POLA10>3.0.CO;2-4
  6. J. Zhengneng, L. Najun, W. Chuanfeng, J. Huajiang, L. Jianmei, and Z. Qizhong, Dyes Pigm., 96, 204 (2013). https://doi.org/10.1016/j.dyepig.2012.07.018
  7. E. B. Veale and T. Gunnlaugsson, J. Org. Chem., 75, 5513 (2010). https://doi.org/10.1021/jo1005697
  8. G. J. Ryan, S. Quinn, and T. Gunnlaugsson, Inorg. Chem., 47, 401 (2008). https://doi.org/10.1021/ic700967y
  9. A. Habibi, E. Vachegani-Farahani, M. A. Semsarzadeh, and K. Sadaghiani, J. Polym. Sci., Part A: Polym. Chem., 42, 112 (2004). https://doi.org/10.1002/pola.10964
  10. K. J. Ivin, S. Pitchumani, C. R. Reddy, and S. Rajadurai, J. Polym. Sci., Polym. Chem. Ed., 20, 277 (1982). https://doi.org/10.1002/pol.1982.170200202
  11. U. S. Kumar, R. Balaji, R. A. Prasath, and S. Nanjundan, J. Macromol. Sci., Part A: Pure Appl. Chem., 38, 67 (2001). https://doi.org/10.1081/MA-100000361
  12. D. D. Perrin and W. L. F. Armargo, Purification of Laboratory Chemicals, A. Wheaton and Co., Ltd., Pergamon, 1980.
  13. V. Anand and V. Choudhary, J. Appl. Polym. Sci., 89, 1195 (2003). https://doi.org/10.1002/app.12138
  14. S.-M. OH and D.-H. OH, J. Korean Oil Chem. Soc., 30, 297 (2013). https://doi.org/10.12925/jkocs.2013.30.2.297
  15. D. H. Oh, W. S. Kim, and K. H. Seo, Polym. Commun., 29, 108 (1988).
  16. W. S. Kim, K. H. Hong, N. K. Park, and B. K. Kwon, Polymer(Korea), 13, 608 (1989).
  17. H. Shaki, K. Gharanjig, S. Rouhani, and A. Khosravi, J. Photoch. Photobio. A: Chemistry, 216, 44 (2010). https://doi.org/10.1016/j.jphotochem.2010.09.004
  18. G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer Verlag, Berlin Heidelberg, 1994.
  19. Z. J. Jedlinski, B. Kowaski, and U. Gaik, Macromolecules, 16, 522 (1983). https://doi.org/10.1021/ma00238a006
  20. B. S. R. Reddy and S. Balasubramanian, Eur. Polym. J., 38, 803 (2002). https://doi.org/10.1016/S0014-3057(01)00242-7
  21. C. S. Jone Selvamalar, T. Krithiga, A. Penlidis, and S. Nanjundan, React. Funct. Polym., 56, 89 (2003). https://doi.org/10.1016/S1381-5148(03)00028-2
  22. U. Senthilkumar, K. Ganesan, and B. S. R. Reddy, J. Polym. Res., 10, 21 (2003). https://doi.org/10.1023/A:1023938301946
  23. M. Fineman and S. D. Ross, J. Polym. Sci., 5, 259 (1950). https://doi.org/10.1002/pol.1950.120050210
  24. T. Kelen and F. Kelen-Tudos, J. Macromol. Sci., Part A: Polym. Chem., 9, 1 (1975). https://doi.org/10.1080/00222337508068644
  25. N. Valdebenito, F. R. Diaz, L. H. Tagle, L. Gargallo, and D. Radic, Eur. Polym. J., 37, 1753 (2001). https://doi.org/10.1016/S0014-3057(01)00064-7
  26. T. Kelen, F. Tudos, B. Turesamji, and J. Kennedy, J. Polym. Sci., Part A: Polym. Chem., 15, 3047 (1977). https://doi.org/10.1002/pol.1977.170151219
  27. P. S. Vijayanand, C. S. J. Selvamalar, A. Penlidis, and S. Naniundan, Polym. Int., 52, 1856 (2003). https://doi.org/10.1002/pi.1114
  28. C. S. J. Selvamalar, T. Krithiga, A. Penlidis, and S. Nanjundan, React. Funct. Polym., 56, 89 (2003). https://doi.org/10.1016/S1381-5148(03)00028-2
  29. U. Senthilkumar, K. Ganesan, and B. S. R. Reddy, J. Polym. Res., 10, 21 (2003). https://doi.org/10.1023/A:1023938301946
  30. T. Alfrey, Jr., and C. C. Price, J. Polym. Sci., 2. 101 (1947). https://doi.org/10.1002/pol.1947.120020112
  31. I. Grabchev, I. Moneva, V. Bojinov, and S. Guittonneau, J. Mater. Chem., 10, 1291 (2000). https://doi.org/10.1039/a909153j