DOI QR코드

DOI QR Code

환원된 산화그래핀/젤라틴 복합필름의 합성과 분석

Synthesis and Characterization of Reduced Graphene Oxide/Gelatin Composite Films

  • Chen, Guangxin (School of Materials Science and Engineering, Qilu University of Technology) ;
  • Qiao, Congde (School of Materials Science and Engineering, Qilu University of Technology) ;
  • Xu, Jing (Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology) ;
  • Yao, Jinshui (School of Materials Science and Engineering, Qilu University of Technology)
  • 투고 : 2013.12.30
  • 심사 : 2014.03.03
  • 발행 : 2014.07.25

초록

Reduced graphene oxide (RGO) was fabricated using gelatin as a reductant, and it could be stably dispersed in gelatin solution without aggregation. A series of RGO/gelatin composite films with various RGO contents were prepared by a solution-casting method. The structure and thermal properties of the RGO/gelatin composite films were characterized by UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). The addition of RGO enhances the degree of crosslinking of gelatin films and decreases the swelling ability of the gelatin films in water, indicating that RGO/gelatin composite films have a better wet stability than gelatin films. The glass transition temperature ($T_g$) of gelatin films is also increased with the incorporation of RGO. The presence of RGO slightly increases the degradation temperature of gelatin films due to the very low content of RGO in the composite films. Since gelatin is a natural and nontoxic biomacromolecule, the RGO/gelatin composite films are expected to have potential applications in the biomedical field.

키워드

참고문헌

  1. S. Liu, N. H. Low, and M. T. Nickerson, J. Am. Oil Chem. Soc., 87, 809 (2010). https://doi.org/10.1007/s11746-010-1560-7
  2. H. Ai, S. A. Jones, M. M. Villiers, and Y. M. Lvov, J. Control. Release, 86, 59 (2003). https://doi.org/10.1016/S0168-3659(02)00322-X
  3. M. Schreiner, S. Huyskens-Keil, A. Krumbein, H. Prono- Widayat, and P. J. Ludders, Food Eng., 56, 237 (2003). https://doi.org/10.1016/S0260-8774(02)00259-5
  4. E. Chiellini, P. Cinelli, A. Corti, and E. Kenawy, Polym. Degrad. Stab., 73, 549 (2001). https://doi.org/10.1016/S0141-3910(01)00132-X
  5. E. Chiellini, P. Cinelli, E. G. Fernandes, E. R. Kenawy, and A. Lazzeri, Biomacromolecules, 2, 806 (2001). https://doi.org/10.1021/bm015519h
  6. C. Schonauer, E. Tessitore, G. Barbagallo, V. Albanese, and A. Moraci, Eur. Spine J., 13, 89 (2004). https://doi.org/10.1007/s00586-004-0727-z
  7. B. Balakrishnan, M. Mohanty, P. R. Umashankar, and A. Jayakrishnan, Biomaterials, 26, 6335 (2005). https://doi.org/10.1016/j.biomaterials.2005.04.012
  8. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  9. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  10. H. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules, 43, 6515 (2010). https://doi.org/10.1021/ma100572e
  11. T. Kuila, S. Bhadra, D. H. Yao, N. H. Kim, B. Sose, and J. H. Lee, Prog. Polym. Sci., 35, 1350 (2001).
  12. C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, Anal. Chem., 81, 2378 (2009). https://doi.org/10.1021/ac802193c
  13. H. G. Moon and J. H. Chang, Polymer(Korea), 35, 265 (2011).
  14. W. R. Yang, R. K. Ratinac, S. P. Ringer, P. J. Thordarson, J. Gooding, and F. Braet, Angew. Chem. Int. Ed., 49, 2114 (2010). https://doi.org/10.1002/anie.200903463
  15. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud'Homme, and L. C. Brinson, Nat. Nanotechnol., 3, 327 (2008). https://doi.org/10.1038/nnano.2008.96
  16. X. M. Yang, Y. F. Tu, L. Li, S. M. Shang, and X. M. Tao, ACS Appl. Mater. Interfaces, 2, 1707 (2010). https://doi.org/10.1021/am100222m
  17. Y. X. Xu, W. J. Hong, H. Bai, C. Li, and G. Q. Shi, Carbon, 47, 3538 (2009). https://doi.org/10.1016/j.carbon.2009.08.022
  18. M. A. Rafiee, J. Rafiee, Z. Wang, H. H. Song, Z. Z. Yu, and N. Koratkar, ACS Nano, 3, 3884 (2009). https://doi.org/10.1021/nn9010472
  19. C. Y. Wan, M. Frydrych, and B. Q. Chen, Soft Matter, 7, 6159 (2011). https://doi.org/10.1039/c1sm05321c
  20. W. C. Wang, Z. P. Wang, Y. Liu, N. Li, W. Wang, and J. P. Gao, Mater. Res. Bull., 47, 2245 (2012). https://doi.org/10.1016/j.materresbull.2012.05.060
  21. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  22. M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, Carbon, 42, 2929 (2004).
  23. J. An, Y. Q. Gou, C. X. Yang, F. D. Hu, and C. M. Wang, Mater. Sci. Eng. C, 33, 2827 (2013). https://doi.org/10.1016/j.msec.2013.03.008
  24. D. Y. Lee, Z. Khatun, J. H. Lee, and Y. K. Lee, Biomacromolecules, 12, 336 (2011). https://doi.org/10.1021/bm101031a
  25. C. S. Shan, H. F. Yang, D. X. Han, Q. X. Zhang, A. Ivaska, and L. Niu, Langmuir, 25, 12030 (2009). https://doi.org/10.1021/la903265p
  26. R. S. Lakes, Nature, 414, 503 (2001). https://doi.org/10.1038/35107190
  27. E. J. Garboczi, J. F. Douglas, and R. B. Bahn, Mech. Mater., 38, 786 (2006). https://doi.org/10.1016/j.mechmat.2005.06.012
  28. J. L. Suter and P. V. Coveney, Soft Matter, 5, 3896 (2009). https://doi.org/10.1039/b907590a
  29. A. Higuchi, J. Komiyama, and T. Lijima, Polym. Bull., 11, 203 (1984).
  30. F. X. Quinn, E. Kampff, G. Smyth, and V. J. MaBrierty, Macromolecules, 21, 3191 (1988). https://doi.org/10.1021/ma00189a012

피인용 문헌

  1. Targeted drug delivery potential of hydrogel biocomposites containing partially and thermally reduced graphene oxide and natural polymers prepared via green process vol.293, pp.2, 2015, https://doi.org/10.1007/s00396-014-3400-z