DOI QR코드

DOI QR Code

멜트블론 부직포 제조를 위한 PLA/PCL 블렌드의 미세구조, 열적특성, 및 유변학적 성질

Microstructure, Thermal Properties and Rheological Behavior of PLA/PCL Blends for Melt-blown Nonwovens

  • Sun, Hui (The National & Local United Engineering Key Lab of Textile fiber Material and Manufacturing Technology, Zhejiang Sci-Tech University) ;
  • Yu, Bin (The National & Local United Engineering Key Lab of Textile fiber Material and Manufacturing Technology, Zhejiang Sci-Tech University) ;
  • Han, Jan (The National & Local United Engineering Key Lab of Textile fiber Material and Manufacturing Technology, Zhejiang Sci-Tech University) ;
  • Kong, Jinjin (The National & Local United Engineering Key Lab of Textile fiber Material and Manufacturing Technology, Zhejiang Sci-Tech University) ;
  • Meng, Lingrui (The National & Local United Engineering Key Lab of Textile fiber Material and Manufacturing Technology, Zhejiang Sci-Tech University) ;
  • Zhu, Feichao (The National & Local United Engineering Key Lab of Textile fiber Material and Manufacturing Technology, Zhejiang Sci-Tech University)
  • 투고 : 2013.12.27
  • 심사 : 2014.02.18
  • 발행 : 2014.07.25

초록

Poly(lactic acid) (PLA) and poly(${\varepsilon}$-caprolactone) (PCL) blends with various components for melt-blown non-wovens were prepared by a twin-screw extruder. Tributyl citrate (TBC) was added in order to improve the miscibility between PLA and PCL. The results showed that small circular particles of PCL were dispersed in PLA matrix uniformly. The addition of PCL had the heterogeneous nucleation effect on the crystallization of PLA and decreased thermal stability of PLA. The flow of pure PLA and blends approached to Newtonian liquid at a low shear rate and expressed more obvious viscoelasticity at a high shear rate.

키워드

참고문헌

  1. H. Liao and C. Wu, Mater. Sci. Eng. A, 515, 207 (2009). https://doi.org/10.1016/j.msea.2009.03.003
  2. A. K. Mohanty, M. Misra, and G. Hinrinchsen, Macro. Mater. Eng., 276/277, 1 (2000). https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  3. A. K. Mohanty, M. Misra, and L. T. Drzal, J. Polym. Environ., 10, 19 (2002). https://doi.org/10.1023/A:1021013921916
  4. R. Dipa and B. K. Sarkar, J. Appl. Polym. Sci., 80, 1013 (2001). https://doi.org/10.1002/app.1184
  5. C. Yokesahachart and R. Yoksan, Carbohydr. Polym., 83, 22 (2011). https://doi.org/10.1016/j.carbpol.2010.07.020
  6. K. S. Kim, G. W. Lee, S. Y. Lee, H. G. Kim, and S. J. Park, Polymer(Korea), 36, 202 (2012).
  7. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000). https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  8. M. Hakkarainen, Adv. Polym. Sci., 157, 113 (2002). https://doi.org/10.1007/3-540-45734-8_4
  9. R. Shogren, W. M. Doane, D. Garlotta, J. W. Lawton, and J. L. Willett, Polym. Degrad. Stab., 79, 405 (2003). https://doi.org/10.1016/S0141-3910(02)00356-7
  10. H. Tsuji and Y. Ikada, J. Appl. Polym. Sci., 60, 2367 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960627)60:13<2367::AID-APP8>3.0.CO;2-C
  11. T. Takayama and M. Todo, J. Mater. Sci., 41, 4989 (2006). https://doi.org/10.1007/s10853-006-0137-1
  12. L. Wang, W. Ma, R. A. Gross, and S. P. Mccarthy, Polym. Degrad. Stab., 59, 161 (1998). https://doi.org/10.1016/S0141-3910(97)00196-1
  13. J. C. Meredith and E. J. Amis, Macromol. Chem. Phys., 201, 733 (2000). https://doi.org/10.1002/(SICI)1521-3935(20000301)201:6<733::AID-MACP733>3.0.CO;2-5
  14. H. Tsuji, T. Yamada, M. Suzuki, and S. Itsuno, Polym. Int., 52, 269 (2003). https://doi.org/10.1002/pi.1093
  15. B. Y. Shin, B. H. Cho, K. H. Hong, and B. S. Kim, Polymer (Korea), 33, 588 (2009).
  16. T. Takayama, M. Todo, and H. Tsuji, J. Mech. Behav. Biomed. Mater., 4, 255 (2011). https://doi.org/10.1016/j.jmbbm.2010.10.003
  17. T. Takayama, M. Todo, H. Tsuji, and K. Arakawa, J. Mater. Sci., 41, 6501 (2006). https://doi.org/10.1007/s10853-006-0611-9
  18. D. H. Muller and A. Krobjilowski, Int. Nonwovens J., Spring, 11 (2001).
  19. Y. Liu and B. W. Cheng, Text. Res. J., 80, 771 (2007).
  20. B. Yu, H. Sun, J. Han, P. C. Yu, and G. P. Xu, Appl. Mech. Mater., 268-270, 123 (2013).
  21. B. Yu, J. Han, and P. Yu, J. Text. Res. (in Chinese), 34, 82 (2013).
  22. E. Fischer, H. Sterzel, and G. Wegner, Kolloid Z. Z. Polym., 251, 980 (1973). https://doi.org/10.1007/BF01498927
  23. M. Avella, M. E. Errico, P. Laurienzo, E. Martuscelli, M. Raimo, and R. Rimedio, Polymer, 41, 3875 (2000). https://doi.org/10.1016/S0032-3861(99)00663-1
  24. M. Todo, K. Arakawa, H. Tsuji, and Y. Takenoshita, Proc. Xth Int. Cong., Tokyo, p 55 (2004).
  25. M. Xiao and Q. Yang, China Plast. Indus., 38, 15 (2010).
  26. Y. Ikada, K. Jamshidi, H. Tsuji, and S. H. Hyon, Macromolecules, 20, 904 (1987). https://doi.org/10.1021/ma00170a034
  27. S. Jiang, X. Ji, L. An, and B. Jiang, Polymer, 42, 3901 (2001). https://doi.org/10.1016/S0032-3861(00)00565-6
  28. L. Lijian, L. Suming, H. Gareau, and M. Vert, Biomacromolecules, 1, 350 (2000). https://doi.org/10.1021/bm000046k
  29. M. Avella, M. E. Errico, P. Laurienzo, E. Martuscelli, M. Raimo, and R. Rimedio, Polymer, 41, 3875 (2000). https://doi.org/10.1016/S0032-3861(99)00663-1
  30. J. Shichun, J. Xiangling, A. Lijia, and J. Bingzheng, Polymer, 42, 3901 (2001). https://doi.org/10.1016/S0032-3861(00)00565-6
  31. Y. Lemmouchi, M. Murariu, A. Margarida, D. Santos, and A. J. Amass, Eur. Polym. J., 45, 2839 (2009). https://doi.org/10.1016/j.eurpolymj.2009.07.006

피인용 문헌

  1. The Structure and Properties of Biodegradable PLLA/PDLA for Melt-Blown Nonwovens vol.25, pp.2, 2017, https://doi.org/10.1007/s10924-016-0827-y
  2. Study on structure and property of PP/TPU melt-blown nonwovens pp.1754-2340, 2018, https://doi.org/10.1080/00405000.2018.1485461
  3. PLA-PCL-PEG-PCL-PLA based micelles for improving the ocular permeability of dexamethasone: development, characterization, and in vitro evaluation vol.25, pp.6, 2014, https://doi.org/10.1080/10837450.2020.1733606