DOI QR코드

DOI QR Code

Preparation and Characterization of Poly(lactic acid) Nanocomposites Reinforced with Lignin-containing Cellulose Nanofibrils

리그닌 함유 셀룰로오스 나노섬유로 강화된 폴리락틴산 나노복합재의 제조 및 분석

  • Sun, Haibo (MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University) ;
  • Wang, Xuan (MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University) ;
  • Zhang, Liping (MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University)
  • Received : 2013.12.23
  • Accepted : 2014.02.18
  • Published : 2014.07.25

Abstract

A chemo-mechanical method was used to prepare lignin-containing cellulose nanofibrils(L-CNF) from unbleached woodpulps dispersed uniformly in an organic solvent. L-CNF/PLA composites were obtained by solvent casting method. The effects of L-CNF concentration on the composite performances were characterized by tensile test machine, contact angle machine, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). The tensile test results indicated that the tensile strength and elongation-at-break increased by 50.6% and 31.8% compared with pure PLA. The contact angle of PLA composites decreased from $79.3^{\circ}$ to $68.9^{\circ}$. The FTIR analysis successfully showed that L-CNF had formed intermolecular hydrogen bonding with PLA matrix.

Keywords

References

  1. E. Green, E. Stutte, and P. T. C. Harrison, Sci. Total Environ., 256, 205 (2006).
  2. J. H. Yang, J. G. Yu, and Y. Feng, Carbohydr. Polym., 69, 256 (2006).
  3. P. Mangiacapra, G. Gorrasi, and A. Sorrentino, Carbohydr. Polym., 64, 516 (2005).
  4. S. I. Marras and I. Zuburtikudis, Eur. Polym. J., 43, 2191 (2007). https://doi.org/10.1016/j.eurpolymj.2007.03.013
  5. H. Anuar, A. Zuraida, and J. G. Kovacs, J. Thermoplast. Compos., 25, 153 (2012). https://doi.org/10.1177/0892705711408984
  6. R. Mat Taib, Z. A. Ghaleb, and Z. A. Mohd Ishak, J. Appl. Polym. Sci., 123, 2715 (2012). https://doi.org/10.1002/app.34884
  7. M. Farhoodi, S. Dadashi, and F. Hemmati, Polymer(Korea), 36, 745 (2012).
  8. C. S. Wu, Micromol. Biosci., 8, 560 (2008). https://doi.org/10.1002/mabi.200700181
  9. B. Xiao, X. F. Sun, and R. Sun, Polym. Degrad. Stab., 71, 223 (2001). https://doi.org/10.1016/S0141-3910(00)00133-6
  10. L. J. Chun and H. Yong, Polym. Int., 52, 949 (2003). https://doi.org/10.1002/pi.1137
  11. S. Beck-Candanedo, M. Roman, and D. G. Gray, Biomacromolecules, 6, 1048 (2005). https://doi.org/10.1021/bm049300p
  12. D. Bondeson, A. Mathew, and K. Oksman, Cellulose, 13, 171 (2006). https://doi.org/10.1007/s10570-006-9061-4
  13. N. Takahashi and K. Okubo, Bamboo. J., 22, 81 (2005).
  14. W. Tao and D. T. Lawrence, ACS Appl. Mater. Interfaces, 10, 1021 (2010).
  15. M. N. Angles and A. Dufresne, Macromolecules, 34, 2921 (2001). https://doi.org/10.1021/ma001555h
  16. M. A. Samir, F. Alloin, and J. Y. Sanchez, Macromolecules, 37, 4839 (2004). https://doi.org/10.1021/ma049504y
  17. C. S. Wu and H. T. Liao, Polymer, 46, 10017 (2005). https://doi.org/10.1016/j.polymer.2005.08.056
  18. K. S. Kang, B. S. Kim, W. Y. Jang, and B. Y. Shin, Polymer (Korea), 32, 164 (2009).
  19. K. L. Spence, R. A. Venditti, and O. J. Rojas, Cellulose, 17, 835 (2010). https://doi.org/10.1007/s10570-010-9424-8
  20. S. H. Lee, D. J. Kim, and J. H. Kim, Polymer(Korea), 28, 519 (2004).
  21. K. M. Zakir and C. D. Rudd, J. Mater. Sci., 47, 2675 (2012). https://doi.org/10.1007/s10853-011-6093-4
  22. J. H. Lee, Y. H. Lee, and D. S. Lee, Polymer(Korea), 29, 375 (2005).
  23. K. Oksman, A. P. Mathew, and D. Bondeson, Compos. Sci. Technol., 66, 2776 (2006). https://doi.org/10.1016/j.compscitech.2006.03.002
  24. J. F. Kadla and S. Kubo, Composites A, 35, 395 (2004). https://doi.org/10.1016/j.compositesa.2003.09.019
  25. P. Mousaviouna, O. S. William, and G. Georgeb, Ind. Crop. Prod., 32, 656 (2010). https://doi.org/10.1016/j.indcrop.2010.08.001
  26. M. Agarwal, K. W. Koelling, and J. J. Chalmers, Biotechnol. Progr., 14, 517 (1998). https://doi.org/10.1021/bp980015p
  27. T. Miyata and T. Masuko, Polymer, 39, 551 (1998).
  28. M. Barsbay and A. Guner, Carbohydr. Polym., 69, 214 (2007). https://doi.org/10.1016/j.carbpol.2006.09.028

Cited by

  1. Effect of solvent fractionation pretreatment on energy consumption of cellulose nanofabrication from switchgrass vol.54, pp.10, 2014, https://doi.org/10.1007/s10853-019-03413-y
  2. Pulping Processes and Their Effects on Cellulose Fibers and Nanofibrillated Cellulose Properties: A Review vol.70, pp.1, 2020, https://doi.org/10.13073/fpj-d-19-00038
  3. On the potential of lignin-containing cellulose nanofibrils (LCNFs): a review on properties and applications vol.27, pp.4, 2014, https://doi.org/10.1007/s10570-019-02899-8