DOI QR코드

DOI QR Code

Correlation between Physico-Mechanical and Rheological Properties of Rubber Compounds Based on NR-BR with C-C Gel Content in Polybutadiene

NR-BR 기반 고무소재에서 폴리부타디엔의 C-C 겔 함량과 물리기계적, 유변학적 특성 사이의 상호관계

  • Received : 2013.11.19
  • Accepted : 2014.02.13
  • Published : 2014.07.25

Abstract

In this study, microstructure and gel content (C-C) of polybutadiene rubber (PBR) were investigated using various techniques including ASTM D 3616, attenuated total reflectance Fourier transform infrared spectrometry (ATR FTIR), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (NMR). The ATR FTIR spectra of the samples were investigated to determine the cis, trans, 1, 2-vinyl and the C-C gel content in PBR. The absorbance ratios of specific peaks in different grades of PBR were correlated with the C-C gel content measured by the ATR FTIR techniques. Physico-mechanical and rheological properties of rubber compounds based on BR with various amounts of gel were determined. The results showed that there is an acceptable correlation between these properties and the C-C gel content of PBR.

Keywords

References

  1. L. J. Kuzmain, Rubber Technology, 3rd Edition, M. Morton, Editor, Van Nostrand Reinhold, New York, 1987.
  2. J. E. Mark, Polymer Data Handbook, Oxford University Press, New York, 1999.
  3. S. K. H Thiele and D. R. Wilson, J. Macromol. Sci., Part C: Polym. Rev., 43, 581 (2003). https://doi.org/10.1081/MC-120025979
  4. A. Proto and C. Capacchione, Stereoselective Polymerization with Single-Site Catalysts, L. A. Baugh and J. A. M. Canich, Editors, Taylor and Francis, New York, 2008.
  5. IUPAC, Compendium of Chemical Terminology, 2nd Edition, A. D. Mc Naught and A. Wilkinson, Editors, Royal Society of Chemistry, Cambridge, UK, 1997.
  6. J. Cai, Q. Yu, Y. Han, X. Zhang, and L. Jiang, Eur. Polym. J., 43, 2866 (2007). https://doi.org/10.1016/j.eurpolymj.2007.04.036
  7. S. Mitra, S. Chattopadhyay, Y. K. Bharadwaj, S. Sabharwal, and A. K. Bhowmick, Radiat. Phys. Chem., 77, 630 (2008). https://doi.org/10.1016/j.radphyschem.2007.10.006
  8. P. N. Pusey and W. Van Megen, Physica A, 157, 705 (1989). https://doi.org/10.1016/0378-4371(89)90063-0
  9. F. Ikkai and M. Shibayama, Phys. Rev. E, 56, 51 (1997). https://doi.org/10.1103/PhysRevB.56.51
  10. M. Shibayama, Macromol. Chem. Phys., 199, 1 (1998). https://doi.org/10.1002/(SICI)1521-3935(19980101)199:1<1::AID-MACP1>3.0.CO;2-M
  11. M. Shibayama, M. Tsujimoto, and F. Ikkai, Macromolecules, 33, 7868 (2000). https://doi.org/10.1021/ma000563v
  12. Y. Cohen, O. Ramon, I. J. Kopelman, and S. Mizrahi, J. Polym. Sci., Part B: Polym. Phys., 30, 1055 (1992). https://doi.org/10.1002/polb.1992.090300913
  13. D. R. Kioussis and P. Kofinas, Polymer, 46, 10167 (2005). https://doi.org/10.1016/j.polymer.2005.07.084
  14. O. Okay, Prog. Polym. Sci., 25, 711 (2000). https://doi.org/10.1016/S0079-6700(00)00015-0
  15. M. Doi and S. F. Edward, The Theory of Polymer Dynamics, Clarendon Press, Oxford, 1986.
  16. M. Nyden, S. Olle, and K. Gunnar, Macromolecules, 32, 127 (1999). https://doi.org/10.1021/ma981067y
  17. J. Won and T. P. Lodge, J. Polym. Sci., Part B: Polym. Phys., 31, 1897 (1993). https://doi.org/10.1002/polb.1993.090311303
  18. K. Kamiguchi, S. Kuroki, M. Satoh, and I. Ando, Polymer, 46, 11470 (2005). https://doi.org/10.1016/j.polymer.2005.10.045
  19. K. M. Z. Hossain, A. M. S. Chowdhury, M. E. Haque, N. C. Dafader, and F. Akhtar, Polym. Plast. Technol. Eng., 49, 136 (2010). https://doi.org/10.1080/03602550903283141
  20. B. H. Park, I. G. Jung, and S. S. Park, Polymer(Korea), 25, 63 (2001).
  21. M. A. Winnik, S. M. Bystryak, C. Chassenieux, V. Strashko, P. M. Macdonald, and J. Siddiqui, Langmuir, 16, 4495 (2000). https://doi.org/10.1021/la991553u
  22. M. A. Mansilla, L. Silva, W. Salgueiro, A. J. Marzocca, and A. Somoza, J. Appl. Polym. Sci., 125, 992 (2012). https://doi.org/10.1002/app.36321
  23. Y. Yamane, I. Ando, F. L. Buchholz, A. R. Reinhardt, and S. Schlick, Macromolecules, 37, 9841 (2004). https://doi.org/10.1021/ma048343v
  24. F. Khaled and El-Nemr, Mater. Des., 32, 3361 (2011). https://doi.org/10.1016/j.matdes.2011.02.010
  25. A. Mostafa, A. Abouel-Kasem, M. R. Bayoumi, and M. G. El- Sebaie, Mater. Des., 30, 791 (2009). https://doi.org/10.1016/j.matdes.2008.05.065
  26. S. Rouif, Nucl. Instrum. Meth. B, 236, 68 (2005). https://doi.org/10.1016/j.nimb.2005.03.252
  27. J. L. Valentn, A. Rodrguez, A. Marcos-Fernandez, and L. Gonzalez, J. Appl. Polym. Sci., 96, 1 (2005). https://doi.org/10.1002/app.20615
  28. H. Cerid and O. Okay, Eur. Polym. J., 40, 579 (2004). https://doi.org/10.1016/j.eurpolymj.2003.10.014
  29. M. A. Mansilla, A. L. R. Garraza, L. Silva, W. Salgueiro, C. Macchi, A. J. Marzocca, and A. Somoza, Polym. Test., 32, 686 (2013). https://doi.org/10.1016/j.polymertesting.2013.03.001
  30. S. Mitra, S. Chattopadhyay, S. Sabharwal, and A. Bhowmick, Radiat. Phys. Chem., 79, 289 (2010). https://doi.org/10.1016/j.radphyschem.2009.09.009
  31. A. Marcilla, J. C. Garcia-Quesada, J. Hernandez, R. Ruiz- Femenia, and J. M. Perez, Polym. Test., 24, 925 (2005). https://doi.org/10.1016/j.polymertesting.2005.06.002
  32. S. M. Kim and K. J. Kim, Polymer(Korea), 37, 269 (2013).
  33. F. Findik, R. Yilmaz, and T. Koksal, Mater. Des., 25, 269 (2004). https://doi.org/10.1016/j.matdes.2003.11.003
  34. Y. E. Shapiro, Prog. Polym. Sci., 36, 1184 (2011). https://doi.org/10.1016/j.progpolymsci.2011.04.002
  35. S. Mitra, S. Chattopadhyay, Y. K. Bharadwaj, S. Sabharwal, and A. K. Bhowmick, J. Radiat. Phys. Chem., 77, 630 (2008). https://doi.org/10.1016/j.radphyschem.2007.10.006
  36. J. S. Oh, J. M. Lee, and W. S. Ahn, Polymer(Korea), 33, 435 (2009).
  37. Y. S. Lee, W. K. Lee, S. G. Cho, I. Kim, and C. S. Ha, J. Anal. Appl. Pyrol., 78, 85 (2007). https://doi.org/10.1016/j.jaap.2006.05.001
  38. N. S. Tomer, F. Delor-Jestin, R. P. Singh, and J. Lacoste, Polym. Degrad. Stab., 92, 457 (2007). https://doi.org/10.1016/j.polymdegradstab.2006.11.013
  39. M. C. Celin, N. H. Giron, and M. R. Rojo, Polymer, 53, 4461 (2012). https://doi.org/10.1016/j.polymer.2012.07.051
  40. F. Ziaee, H. S. Mobarakeh, and M. Nekoomanesh, Polym. Degrad. Stab., 94, 1336 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.06.002
  41. Y. K. Chae, W. Y. Kang, J. H. Jang, and S. S. Choi, Polym. Test., 29, 953 (2010). https://doi.org/10.1016/j.polymertesting.2010.08.003
  42. S. T. Ganjali and F. Motiee, Rubber Chem. Technol., 81, 297 (2008). https://doi.org/10.5254/1.3548211
  43. F. Chen and J. Qian, Fuel Process. Technol., 67, 53 (2000). https://doi.org/10.1016/S0378-3820(00)00073-4
  44. A. Marcilla, J. C. Garcia-Quesadaa, J. Hernandeza, R. Ruiz- Femeniaa, and J. M. Perez, Polym. Test., 24, 925 (2005). https://doi.org/10.1016/j.polymertesting.2005.06.002
  45. F. Ziaee, H. Salehi-Mobarakeh, M. Nekoomanesh, and H. Arabi, E-Polymers, 118 (2008).
  46. N. Q. Hung, C. Sanglar, M. F. Grenier-Loustalot, P. V. Huong, and H. N. Cuong, Polym. Degrad. Stab., 96, 1255 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.04.008
  47. S. Taghvaei Ganjali, F. Motiee, E. Shakeri, and A. Abbasian, J. Appl. Chem. Res., 4, 53 (2010).
  48. N. Rattanasoma, A. Poonsuk, and T. Makmoon, Polym. Test., 24, 728 (2005). https://doi.org/10.1016/j.polymertesting.2005.04.008
  49. Y. Aoshuang, G. Zhengtao, L. Li, Z. Ying, and Z. Peng, Radiat. Phys. Chem., 63, 497 (2002). https://doi.org/10.1016/S0969-806X(01)00634-X
  50. X. Sheng, J. K. Lee, and M. R. Kessler, Polymer, 50, 1264 (2009). https://doi.org/10.1016/j.polymer.2009.01.021

Cited by

  1. Eco-Friendly and Safe Method of Fabricating Superhydrophobic Surfaces on Stainless Steel Substrates vol.123, pp.42, 2014, https://doi.org/10.1021/acs.jpcc.9b07641
  2. Mechanical Stability of PDMS-Based Micro/Nanotextured Flexible Superhydrophobic Surfaces under External Loading vol.11, pp.51, 2014, https://doi.org/10.1021/acsami.9b17901
  3. Micro-Nano Hierarchical Dendritic Structures for Droplet Curve Manipulation: Implications for Microfluidic Devices vol.3, pp.7, 2014, https://doi.org/10.1021/acsanm.0c00990