DOI QR코드

DOI QR Code

중금속 오염물질 정화를 위한 천연제올라이트의 흡착특성

Adsorption Characteristics Evaluation of Natural Zeolite for Heavy-metal Contaminated Material Remediation

  • Shin, Eun-Chul (Dept. of Civil and Environmental Engineering, Incheon National University) ;
  • Park, Jeong-Jun (Research Institute, GK Engineering) ;
  • Jeong, Cheol-Gyu (Dept. of Civil and Environmental engineering, Incheon National University, Skills Promotion Department, Global Institute for Transferring Skills to the HRD) ;
  • Kim, Sung-Hwan (Dept. of Civil and Environmental Engineering, Incheon National University)
  • 투고 : 2014.05.26
  • 심사 : 2014.06.25
  • 발행 : 2014.06.30

초록

이 연구는 중금속 오염물질의 효과적인 정화를 위하여 배수재에 흡착가능한 오염물질의 양을 평가하는 것이고 배수재의 오염 물질 흡착능은 배수재 필터에 도포된 반응물질의 오염물질 흡착시험을 수행하고, 등온흡착모델과 비교하여 평가하였다. 시험에서 사용한 반응물질은 천연 제올라이트이고, 오염물질은 구리, 납, 카드뮴이다. 오염물질별로 초기농도 변화에 따른 흡착량을 Freundlich와 Langmuir흡착등온모델과 비교하였다. 배수재 표면에 도포된 반응물질 성분분석결과 Si, Al, O의 성분이 각각 약 28%, 11%, 48% 포함되어 있어 배수재 표면에 도포된 물질이 중금속(Cu, Pb, Cd) 오염물질 흡착을 위한 반응물질인 제올라이트의 성분으로 나타났다. 반응물질인 제올라이트의 중금속 흡착반응속도는 납, 구리, 카드뮴의 순으로 나타났다. 흡착물질의 성능평가 중 중요한 요소가 반응속도이고, 최대흡착량과 반응속도의 관계에서 제올라이트를 반응물질로 사용할 경우, 지반내 복합중금속의 제거 순서를 결정하는 설계 요소로 활용할 수 있다. 즉, 납은 구리에 비해 최대흡착량은 작지만 상대적으로 반응속도가 빠르므로 1차적으로 제거가 가능하며, 납의 제거 후 구리의 제거가 가능하다. 카드뮴의 경우 다른 중금속의 제거 후 마지막으로 제거가 가능한 것으로 분석되었다.

The amount of the contaminants that can be adsorbed on the drain was evaluated for the effective remediation of the contaminated soil, and the contaminants adsorptivity of the drain was evaluated by comparing the isothermal adsorption model after carrying out the contaminants adsorption test of the reactants coated on the surface of the drain. The reactant used in the experiment is a natural zeolite, and the contaminants are copper, lead and cadmium. The results that Freundlich and Langmuir adsorption isotherm model are compared to the adsorption amount according to the change of the initial concentration by the contaminants. As a result of the component analysis, because Si, Al and O are contained approximately 28%, 11% and 48%, respectively, it is identified that the material coated on the surface of the drain is the component of the zeolite which is the reactant for the adsorption of the heavy-metal (Cu, Pb, Cd) contaminants. The heavy-metal adsorption kinetic of the zeolite which is the reactant was decreased in order of lead, copper and cadmium. The important factor of the performance evaluation of the adsorbent is the reaction rate, and if zeolite is used as the reactant in the relationship between the maximum amount of adsorption and reaction rate, it can be utilized as the design factor that determine the removal order of the complex heavy-metal. In other words, because the maximum adsorption quantity of lead is smaller compared to copper but the reaction rate is relatively fast, it can be primarily removed, and copper can be removed after removing the lead. It was analyzed that Cadmium can be finally removed after that other heavy-metal is removed.

키워드

참고문헌

  1. Breck, D. W. (1974), Zeolite Molecular Sieves, John Wiley and Sons, New York.
  2. Freundlich, H. (1906), "Uber die adsorption in losungen", Z Phys Chem., Vol.57(A), pp.385-470.
  3. Mimura, H., Tachibana, F. and Akiba, K. (1992), "Ion-Exchange Selectivity for Cesium in Ferrierites", Journal of Nuclear Science and Technology, Vol.29, Issue 2, pp.184-186. https://doi.org/10.1080/18811248.1992.9731511
  4. Ho, Y. S. and McKay (1998), "Removal of Pollutants from Wastewaters by Low Cost Sorbents: Kinetic and Equilibrium Studies", APCSEET-CONFERENCE, pp.237-244.
  5. Langmuir, I. (1916), "The Constitution and Fundamental Properties of Solids and Liquids Part i. Solids", Journal of the American Chemical Society, Vol.38, pp.2221-2295. https://doi.org/10.1021/ja02268a002
  6. Korean Ministry of Environment Standard in soil (2011), Korean Ministry of Environment.
  7. Kim, C. K. (2012), "A Study of Kaolin and Zeolite for Radioactive Waste Disposal Facilities", Ph.D Thesis, Hanyang University (in Korean).
  8. Kim, D. S. and Park, J. W. (1993), "Removal of $Cs^+$ and $Sr^{2+}$ Ions by Natural Zeolites", Journal of Environmental Sciences Society, Vol.2, No.4, pp.347-356 (in Korean).
  9. LAGERGREN, S. (1898), "Zur Theorie der Sogenannten Adsorption Geloster Stoffe", Kungliga Svenska Vetenskapsakademiens, Handlingar, Vol.24(4), pp.1-39.
  10. Lee, D. H. and Moom, H. (1999), Asorption of Heavy Metal Ions using Natural and Pretreated Zeolites, Ph.D Thesis, Chonnam National University (in Korean).
  11. Loizidou, M., Haralambous, K. J., Loukatos, A. and Dimitrakopoulou, D. (1992), "Natural Zeolites and Their Ion Exchange Behavior Towards Chromium", Journal of Environmental Science and Health Part A, Vol.27, Issue7, pp.1759-1769.
  12. McBride, M. B. (1994), Environmental Chemistry of Soils, Oxford University Press, New York.
  13. Pansinia. M., Colellab, C. and Gennaroc, M. De (1991), "Chromium Removal from Water by Ion Exchange using Zeolite", Desalination, Vol.83, Issues1-3, pp.145-157. https://doi.org/10.1016/0011-9164(91)85091-8
  14. Yong, R. N., Mohamed, A. M. O, and Warkentin, B. P. (1992), Principles of Contaminant Transport in Soil. Elsevier.
  15. Yu, S. B., Li, J. X., Xu, C. G., T, Y. F. and Gao, Y. J. (1997), "Importance of Epistasis as the Genetic Basis of Heterosis in an Elite Rice Hybrid", Proceeding National Academic Science USA, Vol.94, pp.9226-231. https://doi.org/10.1073/pnas.94.17.9226
  16. Zamzow, M. J., Eichbaum, B. R., Sandgren, K. R. and Shanks, D. E. (1990), "Removal of Heavy Metals and Other Cations from Wastewater Using Zeolites", Separation Science and Technology, Vol.25, No.13-15, pp.1555-1569. https://doi.org/10.1080/01496399008050409

피인용 문헌

  1. Characterization of Natural Zeolite and Study of Adsorption Properties of Heavy Metal Ions for Development of Zeolite Mine vol.28, pp.4, 2015, https://doi.org/10.9727/jmsk.2015.28.4.299
  2. 산업단지에서의 흡착 성토재로써 제올라이트 토양혼합물의 특성평가 vol.39, pp.1, 2014, https://doi.org/10.12652/ksce.2019.39.1.0203
  3. A Study on Adsorption of Heavy Metals with Zeolite and FeS Media vol.42, pp.7, 2014, https://doi.org/10.4491/ksee.2020.42.7.349
  4. KOH 농도 및 탄화온도가 왕겨 활성 바이오차의 NH4-N 흡착능 향상에 미치는 영향 vol.39, pp.3, 2020, https://doi.org/10.5338/kjea.2020.39.3.20