DOI QR코드

DOI QR Code

Coencapsulation of L-Ascorbic Acid and α-Tocopherol in Ethosomes and Their Properties

친수성 L-ascorbic acid와 소수성 α-tocopherol을 모두 포집하는 ethosome의 특성

  • Lim, Yoon Mi (Department of Applied Chemistry, Dongduk Women's University) ;
  • Jun, Yoon Kyung (Department of Applied Chemistry, Dongduk Women's University) ;
  • Park, Seyeon (Department of Applied Chemistry, Dongduk Women's University) ;
  • Jin, Byung Suk (Department of Applied Chemistry, Dongduk Women's University)
  • 임윤미 (동덕여자대학교 자연과학대학 응용화학과) ;
  • 전윤경 (동덕여자대학교 자연과학대학 응용화학과) ;
  • 박세연 (동덕여자대학교 자연과학대학 응용화학과) ;
  • 진병석 (동덕여자대학교 자연과학대학 응용화학과)
  • Received : 2014.04.14
  • Accepted : 2014.06.02
  • Published : 2014.08.10

Abstract

Coencapsulation of hydrophilic L-ascorbic acid and hydrophobic ${\alpha}$-tocopherol in ethosome vesicles was attempted and their properties were investigated in this study. The size of vesicles decreased with increasing concentration of L-ascorbic acid solution encapsulated in ethosome. The vesicle size and encapsulation efficiency of ethosomes increased slightly when ${\alpha}$-tocopherol was added into the HPC-forming liquid crystalline membrane of ethosome. However, the vesicle size increased highly and the encapsulation efficiency decreased abruptly at mixing ratios above 25 wt% due to the formation of an imperfect liquid crystalline structure within a vesicle membrane. It was observed that antioxidant activity was maintained for 5 weeks at $40^{\circ}C$ when L-ascorbic acid and ${\alpha}$-tocopherol were coencapsulated in ethosome. The L-ascorbic acid in ethosome was stable compared to that in aqueous solution under UV radiation.

친수성 아스코르빈산(L-ascorbic acid)과 소수성 토코페롤(${\alpha}$-tocopherol)을 모두 함유하는 ethosome 베시클을 제조하면서 이들의 특성을 살펴보았다. Ethosome에 포집되는 아스코르빈산 수용액 농도가 증가할수록 베시클 입자 크기는 작아졌다. 토코페롤은 HPC에 혼합되어 ethosome 베시클 액정막의 구성 성분이 되는데 토코페롤 혼합에 의해 베시클 입자크기와 아스코르빈산 수용액의 포집효율이 다소 증가하였다. 그러나 혼합비율이 25 wt% 이상이 되면 베시클 막이 불완전한 액정구조로 변하면서 입자크기는 크게 증가하고 포집효율은 크게 감소하였다. 아스코르빈산과 토코페롤이 함께 ethosome에 포집되어 있을 때 항산화 효능이 고온($40^{\circ}C$)에서도 5주간 안정하게 유지됨을 확인하였다. UV 조사 실험에서도 아스코르빈산은 수용액 상태로 있을 때에 비해 ethosome에 포집되어 있을 때 안정성이 향상되었다.

Keywords

References

  1. G. Cevc and G. Blume, Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force, Biochim. Biophys. Acta., 1104, 226-232 (1992). https://doi.org/10.1016/0005-2736(92)90154-E
  2. G. Cevc, Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery, Crit. Rev. Ther. Drug. Carrier. Syst., 13, 257-388 (1996).
  3. M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Lipid vesicles for skin delivery of drugs: reviewing three decades of research, Int. J. Pharm., 332, 1-16 (2007). https://doi.org/10.1016/j.ijpharm.2006.12.005
  4. G. M. M. El Maghraby, A. C. Williams, and B. W. Barry, Interaction of surfactant and skin penetration enhancers with liposomes, Int. J. Pharm., 276, 143-161 (2004). https://doi.org/10.1016/j.ijpharm.2004.02.024
  5. E. Touitou, N. Dayan, L. Bergelson, B. Godin, and M. Eliaz, Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties, J. Control. Rel., 65, 403-418 (2000). https://doi.org/10.1016/S0168-3659(99)00222-9
  6. E. Touitou, B. Godin, and C. Weiss, Enhanced delivery of drugs into and across the skin by ethosomal carriers, Drug Dev. Res., 50, 406-415 (2000). https://doi.org/10.1002/1098-2299(200007/08)50:3/4<406::AID-DDR23>3.0.CO;2-M
  7. V. Dave, D. Kumar, S. Lewis, and S. Paliwal, Ethosome for enhanced transdermal drug delivery of aceclofenac, Int. J. Drug Del., 2, 81-92 (2010). https://doi.org/10.5138/ijdd.2010.0975.0215.02016
  8. N. Upadhyay, S. Mandal, L. Bhatia, S. Shailesh, and P. Chauhan, A Review on Ethosomes: An Emerging Approach for Drug Delivery through the Skin, Recent Research in Science and Tech., 3(7), 19-24 (2011).
  9. B. S. Jin, S. M. Lee, and K. H. Lee, A Study on the Factors affecting entrapment efficiency and particle size of ethosomes, J. Kor. Ind. Eng. Chem., 17(2), 138-143 (2006).
  10. S. M. Lee, M. J. Choi, Y. M. Lee, and B. S. Jin, Preparation and characterization of ethosome containing hydrophobic flavonoid luteolin, Appl. Chem. Eng., 21(1), 40-45 (2010).
  11. M. H-Miller, L. S. S. Guo, and R. L. Hamilton, Tocopherol-phospholipid liposome; maximum content and stability to serum proteins, Lipids, 20(3), 195-200 (1985). https://doi.org/10.1007/BF02534254
  12. N. Liu and H. J. Park, Chitosan-coated nanoliposome as vitamin E carrier, J. Microencapsul., 26(3), 235-242 (2009). https://doi.org/10.1080/02652040802273469
  13. Md. A. Kamal and V. A. Raghunathan, Modulated phases of phospholipid bilayers induced by tocopherols, Biochim. Biophys. Acta., 1818, 2486-2493 (2012). https://doi.org/10.1016/j.bbamem.2012.06.016
  14. M. P. Sanchez-Migallon, F. J. Aranda, and J. C. Gomez-Feernandez, Interaction between $\alpha$-tocopherol and heteroacid phosphatidylcholines with different amounts of unsaturation, Biochim. Biophys. Acta., 1279(2), 251-258 (1996). https://doi.org/10.1016/0005-2736(95)00276-6
  15. K. Fukuzawa, W. Ikebata, A. Shibata, I. Kumadaki, T. Sakanaka, and S. Urano, Location and dynamics of alpha-tocopherol in model phospholipid membranes with different charges, Chem. Phys. Lipids, 63, 69-75 (1992). https://doi.org/10.1016/0009-3084(92)90024-J
  16. A. K. Samhan-Arias, Y. Y. Tyurina, and V. E. Kagan, Lipid antioxidants: free radical scavenging versus regulation of enzymatic lipid peroxidation, J. Clin. Biochem. Nutr., 48(1), 91-95 (2011).
  17. P. J. Quinn, The effect of tocopherol on the structure and permeability of phosphatidyl-choline liposomes, J. Control. Rel., 160(2), 158-163 (2012). https://doi.org/10.1016/j.jconrel.2011.12.029
  18. E. Niki, Interaction of ascorbate and alpha-tocopherol, Ann. N. Y. Acad. Sci., 498, 186-199 (1987). https://doi.org/10.1111/j.1749-6632.1987.tb23761.x
  19. E. Niki, N. Noguchi, H. Tsuchihashi, and N. Gotoh, Interaction among vitamin C, vitamin E, and $\beta$-carotene, Am. J. Clin. Nutr., 62, 1322S-1326S (1995). https://doi.org/10.1093/ajcn/62.6.1322S
  20. C. M. Sabliov, C. Fronczek, C. E. Astete, M. Khachaturyan, L. Khachatryan, and C. Leonardi, Effects of temperature and UV Light on degradation of $\alpha$-Tocopherol in free and dissolved form, J. Am. Oil Chem. Soc., 86, 895-902 (2009). https://doi.org/10.1007/s11746-009-1411-6

Cited by

  1. Edge Activator가 수화 액정형 베시클의 입자크기와 피부 침투에 미치는 영향 vol.28, pp.6, 2014, https://doi.org/10.14478/ace.2017.1077