DOI QR코드

DOI QR Code

터널 굴착하중 조건에서의 절리암반의 탄성계수 예측

Estimation of Elastic Modulus of Jointed Rock Mass under Tunnel Excavation Loading

  • 손무락 (대구대학교 토목공학과) ;
  • 이원기 (대구대학교 토목공학과) ;
  • 황영철 (상지대학교 건설시스템공학과)
  • 투고 : 2014.03.07
  • 심사 : 2014.06.24
  • 발행 : 2014.07.31

초록

절리를 포함한 암반에서 터널굴착시 발생하는 내공변위는 터널의 안정성과 필요 확보공간 및 시공성을 위해서 매우 중요한 인자이다. 터널굴착시 발생할 수 있는 내공변위의 크기는 탄성계수가 큰 영향을 미치는 인자이며 특히 절리면이 터널거동을 지배하는 암반에서는 신뢰성 있는 절리암반의 탄성계수를 산정하는 것은 매우 중요하다. 절리암반의 탄성계수는 암석종류, 절리조건, 하중조건 등과 같은 많은 인자에 의해서 영향을 받는다. 그럼에도 불구하고 기존의 대부분의 연구는 암석 및 절리, 터널 굴착하중 조건 등을 체계적으로 고려하지 않고 압축하중 조건에 근거한 대략적인 경험식에 초점을 두고 있다. 그러므로 본 연구에서는 터널 굴착하중 조건에서의 절리암반의 탄성계수를 보다 합리적으로 추정하기 위하여 암석 및 절리조건을 체계적으로 고려하였다. 본 연구에서는 암석종류, 절리전단강도, 절리경사각, 절리군의 수 및 절리간격을 해석인자로서 고려하였다. 다양한 암석 및 절리조건을 고려하여 수치해석적 매개변수 연구를 수행하였고, 그 결과를 기존의 경험적인 방법들과 비교분석하였으며, 다양한 암석 및 절리조건에서의 탄성계수에 대한 변화도표를 제시하였다. 본 연구를 통해 얻어진 결과는 절리암반에서 터널굴착으로 인해 발생되는 터널 내공변위를 파악하는데 실무적으로 활용될 수 있을 것으로 기대된다.

Tunneling-induced displacement in a jointed rock mass is an important factor to control tunnel stability and to secure a demanded space and construction quality. The magnitude of the inducible displacements is significantly affected by an elastic modulus and therefore, in a rock mass where a joint controls tunnel behavior, it is very important to estimate an elastic modulus of jointed rock mass reliably. Elastic modulus of jointed rock mass is affected by many factors such as rock type, joint condition, and loading condition. Nevertheless, most existing studies were focused on rough empirical relationships based on compressive loading conditions, which are different from tunnel excavation loading conditions, without a systematic approach of rock, joint, and loading conditions together. Therefore, this study considered rock and joint conditions systematically to estimate an elastic modulus of jointed rock mass under tunnel excavation loading. The controlled factors considered in this study are rock types and joint conditions (joint shear strength, joint inclination angle, number of joint sets, and joint spacing). Numerical parametric studies have been carried out with a consideration of different rock and joint conditions; the results have been compared with existing empirical relationships; and charts of elastic modulus change of different rock and joint conditions have been provided. The results are expected to have a great practical use for estimating the convergence induced by tunnel excavation in jointed rockmass.

키워드

참고문헌

  1. Son, M., Lee, S., and Lee, W. (2011), Estimation of elastic modulus in rock mass for assessing displacment in rock tunnel. Journal of the Korean Society of Civil Engineers, Vol.31(2C), pp.83-92.
  2. Son, M. and Lee, W. (2013), Study on numerical analysis of estimating elastic modulus in rockmass with a consideration of rock and joint characteristcs, Journal of the Korean Society of Civil Engineers, Vol.33(1), pp.229-239. https://doi.org/10.12652/Ksce.2013.33.1.229
  3. Barton, N.R. (1976), The shear strength of rock and rock joints, Int. J. Mech. Min. Sci. & Geomech. Abstr. Vol.13(10), pp.1-24.
  4. Bieniawski, Z.T. (1976), Rock mass classification in rock engineering, John Wiley& Sons, NY.
  5. Bieniawski, Z.T. (1978), Determining rock mass deformability: experience from case histories. Int. J. Rock Mechanics Miner. Sci. and Geomechanics Abstr., Vol.15(5), pp.237-247. https://doi.org/10.1016/0148-9062(78)90956-7
  6. Bienniawski, Z.T. (1989), Engineering Rock Mass Classification, John Wiley & Sons, NY.
  7. Clerici, A. (1993), Indirect determination of the modulus of deformation of rock masses-case histories. Proc. Symp. EUROCK, Rotterdam, A.A.Balkema, eds. L. M. Riberio e Sousa, and N. F. Grossman, pp. 509-517.
  8. Coulson, J.H. (1970), The Effects of Surface Roughness on the Shear Strength of Joints in Rock, Ph.D Dissertation, Univ. of Illinois at Urbana-Champaign.
  9. Deere, D. U. (1963), Thechnical description of rock cores for engineering purposes, Rock Mech. Eng. Geol. 1: 18.
  10. Goodman, R.E. (1989), Introduction to rock mechanics. John Wiley & Sons, New York.
  11. Grimstad, E. and Barton, N. (1993), Updating the Q-system for NMT. Proc. Int. Symp. on Sprayed Concrete, Fagernes, Norwegian Concrete Association, Norway, pp.44-66.
  12. Hoek, E. and Brown, E.T. (1998), Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. Vol.34(8), pp.1165-1186.
  13. Hoek, E. and Diederichs, M.S. (2006), Empirical estimation of rock mass modulus. Int. J. Rock Mech. Min. Sci. Vol.43(2), pp.203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005
  14. Kirsch, G. (1898), Die theorie der elastizitat und die bedurfnisse der festigkeitslehre, Veit. Ver. Deut. Ing., Vol.42(28), pp.797-807.
  15. Palmstrom A. (1996), Characterizing rock masses by the RMi for use in practical rock engineering, Part 1: the development of the rock mass index (RMi), Tunneling and Underground Space Technology, Vol.11(2), pp.175-186. https://doi.org/10.1016/0886-7798(96)00015-6
  16. Palmstrom, A. and Singh, R. (2001), The deformation modulus of rock masses-comparisons between in situ tests and indirect estimates, Tunnelling and Underground Space Technology, Vol.16, pp.115-131. https://doi.org/10.1016/S0886-7798(01)00038-4
  17. Serafim, J.L. and Pereira, J.P. (1983), Considerations on the Geomechanical Classification of Bieniawski, Proc. Symp. on Engineering Geology and Underground Openings, Lisboa, pp.1133-1144.
  18. UDEC User's Manual. (2004), ITASCA Consulting Group, Minnesota, U.S.A 2004.

피인용 문헌

  1. 암반 비탈면의 인장균열 위치 선정에 관한 사례 연구 vol.37, pp.3, 2014, https://doi.org/10.7843/kgs.2021.37.3.5