• Title/Summary/Keyword: Excavation loading

Search Result 84, Processing Time 0.027 seconds

An Experimental Investigation for the Effects of Pre-loading on the Ground Movement in Sand (선행하중 적용시 흙막이 벽체 및 주변지반의 거동에 관한 굴착모형실험)

  • 이봉열;김학문
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.15-26
    • /
    • 2003
  • Urban excavation requires highly reliable prediction technique for the design and construction of earth retaining structure in order to protect adjacent structures around deep excavation. Application of the pre-loading of bracing for deep excavation has been reported, and the known beneficial effects are not fully understood and recognized by many practitioners. Model tests have been carried out to evaluate the efficiency of pre-loading system in reducing ground settlement as well as prediction of structural damage around excavation in sand. The test results revealed that the applied pre-loading of 50% and 70% showed about 20% of reduction in horizontal wall displacement and 30∼40% reduction in ground settlement. Also, bracing forces and earth pressure distribution behind the wall have been monitored during pre-loading at various excavation stages.

Behavior of tunnel under the influence of pre-loading on braced wall during the adjacent ground excavation (근접굴착 시 벽체에 선행하중 재하에 따른 터널의 거동)

  • Kim, Il;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.331-341
    • /
    • 2007
  • Pre-loads could be imposed on the braced wall to prevent the horizontal displacements during the ground excavation adjacent to the existing tunnel. For this purpose, new pre-loading system through which large pre-loads could be applied to the braced wall was used in the model tests. Large scale model tests were performed in the real scale test pit which was 2.0 m in width and 6.0 m in hight and 4.0 m in length. Test ground was constructed by sand. Model tunnel in 1.2 m diameter was constructed before test ground excavation. Test ground was excavated adjacent to existing tunnel and was braced. To investigate the effect of pre-loading, tests without pre-load were also performed. During the ground excavation were the behavior of braced wall, test tunnel, and ground measured. Model tests were also numerically analysed and their results were compared to that of the real scale tests. As a result, it was found that the stability of the existing tunnel was greatly enhanced when the horizontal displacements of braced wall was reduced by applying pre-load larger than the design load.

  • PDF

Estimation of Elastic Modulus of Jointed Rock Mass under Tunnel Excavation Loading (터널 굴착하중 조건에서의 절리암반의 탄성계수 예측)

  • Son, Moorak;Lee, Won-Ki;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.17-26
    • /
    • 2014
  • Tunneling-induced displacement in a jointed rock mass is an important factor to control tunnel stability and to secure a demanded space and construction quality. The magnitude of the inducible displacements is significantly affected by an elastic modulus and therefore, in a rock mass where a joint controls tunnel behavior, it is very important to estimate an elastic modulus of jointed rock mass reliably. Elastic modulus of jointed rock mass is affected by many factors such as rock type, joint condition, and loading condition. Nevertheless, most existing studies were focused on rough empirical relationships based on compressive loading conditions, which are different from tunnel excavation loading conditions, without a systematic approach of rock, joint, and loading conditions together. Therefore, this study considered rock and joint conditions systematically to estimate an elastic modulus of jointed rock mass under tunnel excavation loading. The controlled factors considered in this study are rock types and joint conditions (joint shear strength, joint inclination angle, number of joint sets, and joint spacing). Numerical parametric studies have been carried out with a consideration of different rock and joint conditions; the results have been compared with existing empirical relationships; and charts of elastic modulus change of different rock and joint conditions have been provided. The results are expected to have a great practical use for estimating the convergence induced by tunnel excavation in jointed rockmass.

A study on reduction effects of the ground loss in pre-loading (선행하중 재하시 지반손실 감소효과에 관한 연구)

  • Kim, Bong-Yoo;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.224-231
    • /
    • 2005
  • The ground excavation causes the deformation of the ground where the neighborhood structure is located. The ground deformation result in the vertical settlement of the neighborhood structure as well as the horizontal displacement of the temporary earth retaining structures. The decreased volume of the soil due to the ground settlement is defined as 'the ground loss quantity' or 'the ground loss'. When excavation is performed nearby existing structures, retaining walls should be designed and constructed to minimize the ground loss. Among various methods for reducing the ground loss, this study introduces the pre-loading method which has been recently developed. The reduction effect of the ground loss by pre-loading has been found to be larger as using a wall with relatively smaller rigidity.

  • PDF

A Study on the Optimal Pre-loading Calculation of Strut of Retaining Wall through Numerical Interpretation (수치해석을 통한 흙막이벽체 버팀보의 최적 선행하중 산정에 관한 연구)

  • Moon, In Jong;Jang, Seung Ju;Lee, Kang Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • As the utilization of the underground space is activated, deep excavation of ground has been conducted for the installation of underground structures, the earth retaining wall has widely used to minimize deformation of the excavated ground. In particular, as deep excavation is actively progressing in an urban area where structures are concentrated, methods to minimize the deformation of wall have been devised to prevent damage to the structure adjacent to the wall, and one of these methods is the pre-loading method. This method is a method of suppressing the deformation of wall by actively applying a load on the strut to be installed in wall, and research on this method has been conducted recently. However, although related studies have been actively conducted, the management standard for the pre-loading of bracing has not been clearly presented until now. In addition, since the working force in the strut may increase depending on the depth of excavation or the soil condition of the backfill, the magnitude of the pre-loading that can be applied to the brace may decrease. Nevertheless, the magnitude of the pre-loading (more than 50% of the working load) proposed by the previous research results has been uniformly applied to the strut. In this study, 3D finite element analysis was performed to evaluate the application range of the pre-loading of H-beam strut according to the soil conditions of backfill. As a result of the analysis, it was found that there is a very high possibility that a problem may occur in the stability of the structure of strut due to the earth pressure and the pre-loading when the soil condition is weak and deep excavation proceeds. And it was found that the application range of the pre-loading was 5%~70% of the working load in strut.

Ground Deformation Analysis of Tunnel Excavation Based on the Ground Characteristic Line Concept (지반특성곡선 개념을 이용한 터널굴착 거동해석)

  • 손준익;정하익
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.118-125
    • /
    • 1992
  • The ground deformation due to the tunnel excavation is dependent on various factors such as ground condition, geometry of the tunnel, excavation method, installation of support members, construction condition of each excavation stage, etc. And the distance from the facing effects significantly the stress conditions of the supported and unsupported ground due to the 3-dimensional structural nature of the excavated tunnel. The concept of ground characteristic line has been applied to properly consider the loading condition given by staged tunnel excavation so that the imaginary supporting pressure is applied against the surface of excavated ground. Discussions on the results of the performed finite element analysis were mainly made with respect to the ground settlement, tunnel displacement, earth pressure, stress mobilized in supporting members.

  • PDF

The behavior of tunnel and ground according to the loading of building construction on the ground (터널 상부 지반에 시공되는 건물 하중에 따른 터널 및 주변지반의 거동)

  • Cha, Seok-Kyu;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.731-742
    • /
    • 2018
  • Recently, the construction of the urban area has been rapidly increasing, and the excavation work of the ground has been frequently performed at the upper part of the existing underground structure. Especially, when the structure is constructed after the excavation of the ground, the loading and unloading process is repeated in the lower ground of the excavation so that it can affect existing underground structures. Therefore, in order to maintain the stability of the existing underground structure due to the excavation of the ground, it is necessary to accurately grasp the influence of the excavation and the structure load in the adjoining part. In this study, the effects of the ground excavation and the new structure load on the existing tunnel were investigated by large - scale experiment and numerical analysis. For this purpose, a large model tester with a size reduced to 1/5 of the actual size was constructed, and model tests and numerical analyzes were carried out to investigate the effects of the excavation of the body ground by maintaining the distance between the excavation floor and the tunnel ceiling constant, The impacts were identified. As a result of the study, it was confirmed that the deeper the excavation depth, the larger the influence on the existing tunnel. At the same distance, it was confirmed that the tunnel displacement increased with the increase of the building load, and the ground stress increased up to 2.4 times. From this result, it was confirmed that the effect of the increase of the underground stress on the existing tunnel is affected by the increase of the building load, and the influence of the underground stress is decreased from the new load width above 3.0D.

암반절리와 시공단계를 고려한 지하 구조체의 해석

  • 김문겸;장정범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.179-194
    • /
    • 1991
  • This paper explains outline of a behavior analysis program for underground structures, and its application to a tunnel problem. The program can deal with elasto-plastic behavior of medium and supporting structures, discontinuous behavior due to existing joint, creation and propagation of cracks. in-situ loading condition, and incremental behavior due to stepwise excavation, etc. The program also has additional capabilities such as graphic output of mesh, displacement pattern, stress condition, and safety factor contour, and automatic mesh generation during the excavation steps.

  • PDF

Behavior Analyses of Ring Beam at Vertical Wall with Change of Excavation Depth (굴착심도 변화에 따른 원형수직구 Ring Beam의 거동분석)

  • Park, Jin-Eun;Kyung, Kab-Soo;Lee, Jun-Ho;Yoon, Cheol-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.116-124
    • /
    • 2008
  • In order to evaluate the behavior patterns of the ring beam by excavation at the vertical wall with circular section, the measured field datum were analyzed and evaluated in this study. Additionally, stress patterns of the ring beam with the change of excavation depth were estimated by using FE analysis. As the results, it was shown that the tendency of the measured values for the behavior patterns of the ring beam is similar to the analyzed values in FE analysis. From the tendency, it was confirmed that the behaviors of the ring beam due to change of excavation depth can predict by FE analysis using the suggested method in this study.