DOI QR코드

DOI QR Code

플라스틱 섬유재와 슬래그 시멘트를 이용한 고강도 간격재의 개발 및 적용성 평가

Applicability Evaluation and Development of High Strength Spacer with Plastic Fiber and Slag Cement

  • 투고 : 2014.01.24
  • 심사 : 2014.03.03
  • 발행 : 2014.07.30

초록

본 연구는 환경부하 저감을 위해 슬래그 시멘트를 사용하고 플라스틱 섬유보강재(폴리프로필렌, 나일론, 유리섬유)를 혼입하여 고강도 간격재를 개발하고 현장적용성을 평가하는 연구이다. 이를 위해 예비실험을 통하여 4가지 섬유 복합재의 첨가량이 결정되었다. 또한 역학적 시험(압축, 휨, 인장) 및 내구성 시험(흡수율, 투수율, 길이변화율, 균열저항성, 탄산화, 동결융해)을 통하여 최적의 섬유재를 도출하였으며, 이를 이용한 고강도 섬유재 간격재의 배합 및 생산시스템을 개발하였다. 또한 현장적용성 평가를 통하여 개발된 간격재의 구체 콘크리트 일체성을 확인하였다.

Spacer is a construction material for maintaining cover depth and steel installation, however several problems like staining, leakage, and cracking are currently issued due to performance degradation and unsatisfactory dimensional stability of spacer. Plastic composite is widely used for prevention of brittle failure in cement based material, which yields improvement of crack resistance and ductile failure. This study is for development and applicability evaluation of high strength spacer with slag cement for environmental load reduction and plastic composite like polypropylene fiber, nylon fiber, and glass fiber. For this work, unit weight of 4 different plastic fibers are evaluated through preliminary tests. Physical tests including compressive, flexural, and tensile strength and durability tests including absorption, permeability, length change, crack resistance, carbonation, and freezing and thawing are performed. Through various tests, optimum plastic fiber is selected and manufacturing system for high strength spacer with the selected fiber is developed. Dimensional stability of the developed spacer is evaluated through field applicability evaluation.

키워드

참고문헌

  1. ACI Committee 544 (1999), Design Consideration for Steel Fiber Reinforced Concrete, ACI 544.4R.
  2. Ahn, J. K., Shim, B., Song, H. W., and Byun, K. J. (2003), A study on fracture characteristics of chemically prestressed mortar, KCI Spring Conference, 15(1), 828-832 (in Korean).
  3. Bentz, D. P., Lura, P., and Roberts, J. W. (2005), Mixture proportioning for internal curing, Concrete International, 27(2), 35-40.
  4. Cho, C. G., Han, S. J., Kwon, M. H., and Lim, C. K. (2012), Seismic performance evaluation of reinforced concrete columns by applying steel fiber-reinforced mortar at plastic hinge region, Journal of the Korea Concrete Institute, 24(3), 241-248 (in Korean). https://doi.org/10.4334/JKCI.2012.24.3.241
  5. Du, L., and Folliard, K. J. (2005), Mechanisms of air entrainment in concrete", Cement and Concrete Research, 35(8), 1463-1471. https://doi.org/10.1016/j.cemconres.2004.07.026
  6. Emmons, P. H. (1994), Concrete Repair and Maintenance Illustrated, R.S. Means Company, 5-16.
  7. JSCE-Concrete Committee (2002), Standard Spcification for Concrete Structures.
  8. KCI (2010), Mixing and construction manual for performancebased concrete, Technical report 1-1: Concrete Korea.
  9. Kim, J. M., Cho, S. H., and Lee, D. K. (2001), High strengthening mechanism by blast furnace slag in concrete based product, Clean Technology, 7(2), 109-117.
  10. Lee, H. H., and Lee, H. J. (2004), Characteristic strength and deformation of SFRC considering steel fiber factor and volume fraction, Journal of the Korea Concrete Institute, 16(6), 759-766 (in Korean). https://doi.org/10.4334/JKCI.2004.16.6.759
  11. Lee, T. W. (2008), A Study on the Actual Condition Survey of Apartment Rebar Work, Journal of Korea Institute of Building Construction, 8(2), 71-79. https://doi.org/10.5345/JKIC.2008.8.2.071
  12. Li, M., and Li, V. C. (2011), High-early-strength ECC for rapid durable repair: Material properties, ACI Materials Journal, 108(1), 3-12.
  13. Oh, B. H., Lee, M. G., Yoo, S. W., and Baik, S. H. (1996), A study on the strength and drying shrinkage crack control characteristics of polypropylene fiber reinforced concrete, Journal of KCI, 8(6), 151-165.
  14. Park, S. S., Kwon, S. J., and Jung, S. H. (2012), Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation, Construction and Building Materials, 29(2), 183-192 (SCIE). https://doi.org/10.1016/j.conbuildmat.2011.09.019
  15. Park, S. S., Kwon, S. J., Jung, S. H., and Lee, S. W. (2012), Modeling of water permeability in early aged concrete with cracks based on micro pore structure, Construction and Building Materials, 27(1), 597-604 (SCIE). https://doi.org/10.1016/j.conbuildmat.2011.07.002
  16. Shah, S. P. (1992), Fiber reinforced cement composite, New York, McGraw-Hill, Inc.
  17. Song, H. W., Kwon, S. J., Byun, K. J., and Park, C. K. (2006), Predicting carbonation in early-aged cracked concrete, Cement and Concrete Research, 36, Issue 5, 979-989. https://doi.org/10.1016/j.cemconres.2005.12.019

피인용 문헌

  1. 슬러리형 셀룰로오즈 파이버를 혼입한 시멘트 모르타르의 강도 특성 vol.7, pp.3, 2014, https://doi.org/10.14190/jrcr.2019.7.3.210