DOI QR코드

DOI QR Code

The ex-Gaussian analysis of reaction time distributions for cognitive experiments

ex-Gaussian 모형을 활용한 인지적 과제의 반응시간 분포 분석

  • Received : 2014.05.07
  • Accepted : 2014.06.12
  • Published : 2014.06.30

Abstract

Although most behavioral reaction times (RTs) for cognitive tasks exhibit positively skewed distributions, the majority of studies primarily rely on a measure of central tendency (e.g. mean) which can cause misinterpretations of data's underlying property. The purpose of current study is to introduce procedures for describing characteristics of RT distributions, thereby effectively examine the influence of experimental manipulations. On the basis of assumption that RT distribution can be represented as a convolution of Gaussian and exponential variables, we fitted the ex-Gaussian function under a maximum-likelihood method. The ex-Gaussian function provides quantitative parameters of distributional properties and the probability density functions. Here we exemplified distributional analysis by using empirical RT data from two conventional visual search tasks, and attempted theoretical interpretation for setsize effect leading proportional mean RT delays. We believe that distributional RT analysis with a mathematical function beyond the central tendency estimates could provide insights into various theoretical and individual difference studies.

대부분의 인지적 과제에서 관찰되는 반응시간 자료의 분포는 정적으로 편포되어 나타남에도 불구하고, 반응시간을 종속측정치로 하는 대다수의 연구들은 표본 평균에 근거한 집중경향치 분석에 의존한다. 본 연구에서는 반응시간 자료의 분포특성에 분석의 초점을 맞추어 실험적 처치의 효과를 구체적으로 추론하는 방법을 소개하였다. 평균 반응시간의 변화는 그 분포상 가우시안 및 지수 분포가 혼합된 형태로 나타난다고 가정할 수 있으며, 최대우도 추정법에 근거한 ex-Gaussian 모형 검증을 통해 반응시간 분포 특성을 수치화된 파라미터로 산출하고 확률밀도함수를 구현할 수 있다. 분석 사례를 위해 두 가지 고전적 시각탐색과제에서 얻어진 반응시간 자료를 사용하였으며, ex-Gaussian 함수를 통해 탐색배열의 항목개수의 증가가 초래하는 평균 반응시간의 지연효과에 대한 해석을 시도하였다. 수리적 모형을 통한 반응시간 분포 분석은 고전적 집중경향치 분석의 한계를 넘어 반응시간을 활용한 다양한 이론 및 개인차 연구에서 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Anderson, B. A., & Folk, C. L. (2010). Variations in the magnitude of attentional capture: Testing a two-process model. Attention, Perception, & Psychophysics, 72(2), 342-352. https://doi.org/10.3758/APP.72.2.342
  2. Anderson, D. E., & Awh, E. (2012). The plateau in mnemonic resolution across large set sizes indicates discrete resource limits in visual working memory. Attention, Perception, & Psychophysics, 74(5), 891-910. https://doi.org/10.3758/s13414-012-0292-1
  3. Balota, D. A., & Spieler, D. H. (1999). Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency. Journal of Experimental Psychology: General, 128(1), 32-55. https://doi.org/10.1037/0096-3445.128.1.32
  4. Balota, D. A., & Yap, M. J. (2011). Moving beyond the mean in studies of mental chronometry the power of response time distributional analyses. Current Directions in Psychological Science, 20(3), 160-166. https://doi.org/10.1177/0963721411408885
  5. Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851-854. https://doi.org/10.1126/science.1158023
  6. Bichot, N. P., Rossi, A. F., & Desimone, R. (2005). Parallel and serial neural mechanisms for visual search in macaque area V4. Science, 308(5721), 529-534. https://doi.org/10.1126/science.1109676
  7. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436. https://doi.org/10.1163/156856897X00357
  8. Brown, S., & Heathcote, A. (2003). QMLE: Fast, robust, and efficient estimation of distribution functions based on quantiles. Behavior Research Methods, Instruments, & Computers, 35(4), 485-492. https://doi.org/10.3758/BF03195527
  9. Bundesen, C. (1990). A theory of visual attention. Psychological review, 97(4), 523-547. https://doi.org/10.1037/0033-295X.97.4.523
  10. Cave, K. R., & Wolfe, J. M. (1990). Modeling the role of parallel processing in visual search. Cognitive psychology, 22(2), 225-271. https://doi.org/10.1016/0010-0285(90)90017-X
  11. Cousineau, D., & Shiffrin, R. M. (2004). Termination of a visual search with large display size effects. Spatial Vision, 17(4), 327-352. https://doi.org/10.1163/1568568041920104
  12. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(01), 87-114. https://doi.org/10.1017/S0140525X01003922
  13. Coyle, T. R. (2003). A review of the worst performance rule: Evidence, theory, and alternative hypotheses. Intelligence, 31(6), 567-587. https://doi.org/10.1016/S0160-2896(03)00054-0
  14. Dehaene, S. (1989). Discriminability and dimensionality effects invisual search for featural conjunctions: A functional pop-out. Perception & Psychophysics, 46(1), 72-80. https://doi.org/10.3758/BF03208076
  15. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual review of neuroscience, 18(1), 193-222. https://doi.org/10.1146/annurev.ne.18.030195.001205
  16. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological review, 96(3), 433-458. https://doi.org/10.1037/0033-295X.96.3.433
  17. Frearson, W., & Eysenck, H. J. (1986). Intelligence, reaction time (RT) and a new 'odd-man-out' RT paradigm. Personality and Individual Differences, 7(6), 807-817. https://doi.org/10.1016/0191-8869(86)90079-6
  18. Heathcote, A., Popiel, S. J., & Mewhort, D. J. (1991). Analysis of response time distributions: An example using the Stroop task. Psychological Bulletin, 109(2), 340-347. https://doi.org/10.1037/0033-2909.109.2.340
  19. Heathcote, A. (1996). RTSYS: A DOS application for the analysis of reaction time data. Behavior Research Methods, Instruments, & Computers, 28(3), 427-445. https://doi.org/10.3758/BF03200523
  20. Hockley, W. E. (1984). Analysis of response time distributions in the study of cognitive processes. Journal of Experimental Psychology: Learning, Memory, & Cognition, 10(4), 598-615. https://doi.org/10.1037/0278-7393.10.4.598
  21. Hohle, R. H. (1965). Inferred components of reaction time as a function of foreperiod duration. Journal of Experimental Psychology, 69(4), 382-386. https://doi.org/10.1037/h0021740
  22. Hwang Gu, S. L., Gau, S. S. F., Tzang, S. W., & Hsu, W. Y. (2013). The ex-Gaussian distribution of reaction times in adolescents with attention-deficit/hyperactivity disorder. Research in developmental disabilities, 34(11), 3709-3719. https://doi.org/10.1016/j.ridd.2013.07.025
  23. Jensen, A. R., & Munro, E. (1979). Reaction time, movement time, and intelligence. Intelligence, 3(2), 121-126. https://doi.org/10.1016/0160-2896(79)90010-2
  24. Jensen, A. R., Schafer, E. W., & Crinella, F. M. (1981). Reaction time, evoked brain potentials, and psychometric g in the severely retarded. Intelligence, 5(2), 179-197. https://doi.org/10.1016/0160-2896(81)90008-8
  25. Lacouture, Y., & Cousineau, D. (2008). How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutorials in Quantitative Methods for Psychology, 4(1), 35-45. https://doi.org/10.20982/tqmp.04.1.p035
  26. Larson, G. E., & Alderton, D. L. (1990). Reaction time variability and intelligence: A "worst performance" analysis of individual differences. Intelligence, 14(3), 309-325. https://doi.org/10.1016/0160-2896(90)90021-K
  27. Leth-Steensen, C., King Elbaz, Z., & Douglas, V. I. (2000). Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approach. Acta psychologica, 104(2), 167-190. https://doi.org/10.1016/S0001-6918(00)00019-6
  28. Luce, R. D. (1986). Response Times: Their Role in Inferring Elementary Mental Organization. Oxford University Press, New York, NY.
  29. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281. https://doi.org/10.1038/36846
  30. Matzke, D., & Wagenmakers, E. J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review, 16(5), 798-817. https://doi.org/10.3758/PBR.16.5.798
  31. McElree, B., & Carrasco, M. (1999). The temporal dynamics of visual search: evidence for parallel processing in feature and conjunction searches. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1517-1539. https://doi.org/10.1037/0096-1523.25.6.1517
  32. Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47(1), 90-100. https://doi.org/10.1016/S0022-2496(02)00028-7
  33. Nakayama, K., & Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions. Nature, 320(6059), 264-265. https://doi.org/10.1038/320264a0
  34. Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded classification. Psychological review, 104(2), 266-300. https://doi.org/10.1037/0033-295X.104.2.266
  35. Pearson, B., Raskevicius, J., Bays, P. M., Pertzov, Y., & Husain, M. (2014). Working memory retrieval as a decision process. Journal of vision, 14(2), 1-15.
  36. Ratcliff, R., & Murdock, B. B. (1976). Retrieval processes in recognition memory. Psychological Review, 83(3), 190-214. https://doi.org/10.1037/0033-295X.83.3.190
  37. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108. https://doi.org/10.1037/0033-295X.85.2.59
  38. Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86(3), 446-461. https://doi.org/10.1037/0033-2909.86.3.446
  39. Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347-356. https://doi.org/10.1111/1467-9280.00067
  40. Ratcliff, R., & Rouder, J. N. (2000). A diffusion model account of masking in two-choice letter identification. Journal of Experimental Psychology: Human perception and performance, 26(1), 127-140. https://doi.org/10.1037/0096-1523.26.1.127
  41. Rohrer, D., & Wixted, J. T. (1994). An analysis of latency and interresponse time in free recall. Memory & Cognition, 22(5), 511-524. https://doi.org/10.3758/BF03198390
  42. Rouder, J. N., & Speckman, P. L. (2004). An evaluation of the Vincentizing method of forming group-level response time distributions. Psychonomic Bulletin & Review, 11(3), 419-427. https://doi.org/10.3758/BF03196589
  43. Schall, J. D., Purcell, B. A., Heitz, R. P., Logan, G. D., & Palmeri, T. J. (2011). Neural mechanisms of saccade target selection: gated accumulator model of the visual-motor cascade. European Journal of Neuroscience, 33(11), 1991-2002. https://doi.org/10.1111/j.1460-9568.2011.07715.x
  44. Schmiedek, F., Oberauer, K., Wilhelm, O., SuB, H. M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136(3), 414-429. https://doi.org/10.1037/0096-3445.136.3.414
  45. Spieler, D. H., Balota, D. A., & Faust, M. E. (1996). Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer's type. Journal of Experimental Psychology: Human Perception and Performance, 22(2), 461-479. https://doi.org/10.1037/0096-1523.22.2.461
  46. Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652-654. https://doi.org/10.1126/science.153.3736.652
  47. Thornton, T. L., & Gilden, D. L. (2007). Parallel and serial processes in visual search. Psychological review, 114(1), 71-103. https://doi.org/10.1037/0033-295X.114.1.71
  48. Townsend, J. T. (1971). A note on the identifiability of parallel and serial processes. Perception & Psychophysics, 10(3), 161-163. https://doi.org/10.3758/BF03205778
  49. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychology, 12(1), 97-136. https://doi.org/10.1016/0010-0285(80)90005-5
  50. Treisman, A. (1982). Perceptual grouping and attention in visual search for features and for objects. Journal of Experimental Psychology: Human Perception and Performance, 8(2), 194-214. https://doi.org/10.1037/0096-1523.8.2.194
  51. Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. The quarterly journal of experimental psychology, 40(2), 201-237. https://doi.org/10.1080/02724988843000104
  52. Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 459-478. https://doi.org/10.1037/0096-1523.16.3.459
  53. Tse, C. S., Balota, D. A., Yap, M. J., Duchek, J. M., & McCabe, D. P. (2010). Effects of healthy aging and early stage dementia of the Alzheimer's type on components of response time distributions in three attention tasks. Neuropsychology, 24(3), 300-315. https://doi.org/10.1037/a0018274
  54. Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic bulletin & review, 7(3), 424-465. https://doi.org/10.3758/BF03214357
  55. West, R., Murphy, K. J., Armilio, M. L., Craik, F. I., & Stuss, D. T. (2002). Lapses of intention and performance variability reveal age-related increases in fluctuations of executive control. Brain and cognition, 49(3), 402-419. https://doi.org/10.1006/brcg.2001.1507
  56. Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 1120-1135.
  57. Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. Psychonomic bulletin & review, 1(2), 202-238. https://doi.org/10.3758/BF03200774
  58. Wolfe, J. M. (1998). What can 1 million trials tell us about visual search?. Psychological Science, 9(1), 33-39. https://doi.org/10.1111/1467-9280.00006
  59. Wolfe, J. M. (2003). Moving towards solutions to some enduring controversies in visual search. Trends in cognitive sciences, 7(2), 70-76. https://doi.org/10.1016/S1364-6613(02)00024-4
  60. Wolfe, J. M., Palmer, E. M., & Horowitz, T. S. (2010). Reaction time distributions constrain models of visual search. Vision research, 50(14), 1304-1311. https://doi.org/10.1016/j.visres.2009.11.002
  61. Zahn, T. P., Roberts, B. P., Schooler, C., & Cohen, R. (1998). Manual and saccadic reaction time with constant and variable preparatory intervals in schizophrenia. Journal of abnormal psychology, 107(2), 328-337. https://doi.org/10.1037/0021-843X.107.2.328
  62. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235. https://doi.org/10.1038/nature06860