DOI QR코드

DOI QR Code

Fabrication of the poly (methyl methacrylate)/clay (modified with fluorinated surfactant) nanocomposites using supercritical fluid process

초임계 공정을 이용한 poly(methyl methacrylate)/클레이 나노복합체 제조

  • Kim, Yong-Ryeol (Department of Chemical Engineering, Daejin University) ;
  • Jeong, Hyeon-Taek (Intelligent Polymer Research Institute, University of Wollongong)
  • 김용렬 (대진대학교 화학공학과) ;
  • 정현택 (호주 울릉공 대학교, 지능형 고분자연구 센터)
  • Received : 2014.05.27
  • Accepted : 2014.06.26
  • Published : 2014.06.30

Abstract

The supercritical fluids (SCFs) have been widely used for material synthesis and processing due to their remarkable properties including low viscosity, high diffusivity and low surface tension. Carbon dioxide is one of the suitable solvents in SCFs processes in terms of its advantages such as easy processibility (with low critical temperature and pressure), inexpensive, nonflammable, nontoxic, and readily available. However, it has generally low solubility for high molecular weight polymers with the exception of fluoropolymers and siloxane polymers. Therefore, hydrocarbon solvents and hydrochlorofluorocarbons have been used for various SCFs process by its high solubility for high molecular weight polymers. In this report, a PMMA/clay nanocomposites were fabricated by using supercritical fluid process. The $Na^+$-MMT(montmorillonites)was modified by a fluorinated surfactant which is able to enhance compatibility with the chlorodifluoromethane(HCFC-22) and thus, improve dispersability of the clay in the polymer matrix. The PMMA/fluorinated surfactant modified clay nanocomposite shows enhanced mechanical and thermal properties which characterized by X-raydiffraction(XRD), Thermo gravimetric analysis(TGA), Dynamic mechanical analysis (DMA) and Transmission electron microscopy (TEM).

최근 자원과 에너지를 절약하고 효과적으로 사용하여 환경 훼손을 줄이고 청정에너지를 이용할 수 있는 기술의 연구가 활발하게 진행되고 있다. 이와 관련 하여, 친환경적이고 경제적이며 독성이 거의 없는 초임계 유체가 물질의 합성과 프로세스에 많이 응용되고 있다. 이산화탄소는 낮은 임계온도와 압력, 가격 경쟁력 그리고 무독성 등의 장점을 가짐으로써 초임계 공정에 많이 사용되고 있는 용매중에 하나이다. 그러나 분자량이 높은 고분자들에게는 낮은 용해력이 단점으로 있어서 사용에 제한적이다. 따라서, 분자량이 높은 고분자를 용해하기 위해선 하이드로카본 계열의 용매를 사용하여야 한다. 본 연구에서는, 초임계 유체를 이용하여 Poly (methyl methacrylate)/클레이 나노 복합체 제조에 관한 연구를 진행 하였다. 또한, 초임계 유체 내에서 분산성을 극대화 할 수 있도록 $Na^+$-MMT 클레이 표면을 플로린 계열의 surfactant로 개질 시키어 복합체 제조에 응용 하였다. 개질된 클레이를 이용하여 제조 된 복합체는 neat Poly (methyl methacrylate)보다 향상된 기계적, 열적 특성을 보였으며, 제조 된 복합체는 X-ray 회절 방법, 열적 안정성 그리고 TEM 으로 나노 클레이의 분산성을 분석 하였다.

Keywords

References

  1. L. E. Nielsen and R. P. Landel. Mechanical Properties of Polymers and Composites. NewYork, Marcel Dekker. (1994).
  2. L. A. Carlsson. Composite Material Series 7: Thermoplastic Composite Materials. Amsterdam ; Elsevier ; New York, NY, USA. (1991).
  3. A. Okada and A. Usuki. The chemistry of polymer-clay hybrids. Mater. Sci. Eng. C3, 109 (1995).
  4. E. P. Giannelis. Polymer layered silicate nanocomposites, Adv. Mater. 8, 29 (1996). https://doi.org/10.1002/adma.19960080104
  5. M. Ogawa and K. Kuroda, Preparation of inorganic-organic nanocomposites through intercalation of organoammonium ions into layered silicates, Bull. Chem. Soc. Jpn. 70, 2593 (1997). https://doi.org/10.1246/bcsj.70.2593
  6. T. J. Pinnavaia and G. W. Beall, "Polymer -clay nanocomposites" Chichester, John Wiley & Sons. (2000).
  7. S. C. Chung, W. G. Hahm and S. S. Im. PET nanocomposites filled with fumed silicas by melt compounding, Macromol. Res. 10, 221 (2002). https://doi.org/10.1007/BF03218309
  8. K. H. Kim, J. Huh, Synthesis of thermally stable organosilicates for exfoliated PET nanocomposite with superior tensile properties, Macromol. Res. 15, 178 (2007). https://doi.org/10.1007/BF03218771
  9. S. G. Kazarian, Polymer processing with supercritical fluids. Polym. Sci. Ser., C. 42, 78 (2000).
  10. J. W. Pack, S. H. Park, Y. W. Lee and Y. H. Kim, High molecular weight poly (L-lactide) and its microsphere synthesized in supercritical chlorodifluoromethane. Macromolecules. 36, 7884 (2003). https://doi.org/10.1021/ma034341j
  11. S. D. Yeo and E. Kiran, Formation of polymer particles with supercritical fluids. J. Supercrit. Fluids. 34, 287 (2005). https://doi.org/10.1016/j.supflu.2004.10.006
  12. S. K. Kumar, S. P. Chabria, R. C. Reid and U. W. Suter, Solubility of polystyrene in supercritical fluids. Macromolecules. 20, 2550 (1987). https://doi.org/10.1021/ma00176a039
  13. V. P. Saraf and E. Kiran, Solubility of polystyrenes in supercritical fluids. J. Supercrit. Fluids. 1, 37 (1998).
  14. J. L. Kendall and D. A. Canelas, Young JL, Desimone JM. Polymerizations in supercritical carbon dioxide. Chem. Rev. 99, 543 (1999). https://doi.org/10.1021/cr9700336
  15. P. Purnama, S. H. Lim, Y. Jung and S. H. Kim,. Stereocomplex-nanocomposite formation of polylactide/fluorinated-clay with superior thermal property using supercritical fluid. Macromol. Res. 20, 545 (2012). https://doi.org/10.1007/s13233-012-0092-4
  16. J. G. Ryu, J. W. Lee and H. Kim, Development of PMMA-clay nanocomposites by using power ultrasonic wave. Macromol. Res. 10, 187 (2002). https://doi.org/10.1007/BF03218304
  17. J. J. Watkins and T. J. McCarthy, Polymerization in supercritical fluid-swollen polymers: a new route to polymer blends. Macromolecules. 27, 4845 (1994). https://doi.org/10.1021/ma00095a031