DOI QR코드

DOI QR Code

Binary Metal Oxide ($IrO_2-RuO_2$) pH Sensor Prepared by Sol-gel Method

Sol-gel 법을 이용한 이성분 금속산화물 ($IrO_2-RuO_2$) pH 센서

  • Received : 2014.03.26
  • Accepted : 2014.06.23
  • Published : 2014.06.30

Abstract

The sol-gel method was used to prepare binary metal oxide ($IrO_2-RuO_2$) pH sensor. The electrodes that mole percent compositions (mol%) of $IrO_2$ and RuO2 were 70:30 and 30:70 were selected. The characterizations of Nernstian response over pH range, response rate, interference on alkaline metals and reproducibility were investigated. Also the electroanalytical properties of these electrodes were evaluated in comparison with a commercial glass pH electrode. The composition of $IrO_2:RuO_2$ 70:30 mol% was chosen as better electrode formulation. The electrode was not susceptible to the action of interfering ions such as $Li^+$, $Na^+$ and $K^+$.

Keywords

References

  1. H. Galster, pH Measurements- Fundamentals, Methods, Applications, Instruments, VCH Publishers, New York (1991)
  2. K.G. Kreider, M.J. Tarlov, J.P. Kline, Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides, Sensors and Actuators B, 28, 167 (1995). https://doi.org/10.1016/0925-4005(95)01655-4
  3. A. Fog, R.P. Buck, Electronic semiconducting oxides as pH sensors, Sensors and Actuators, 5, 137-146 (1984). https://doi.org/10.1016/0250-6874(84)80004-9
  4. S. Yao, M. Wang, M. Madou, A pH electrode based on melt-oxidized iridium oxide, Journal of the Electrochemical Society, 148, 29-36 (2001).
  5. J.V. Dobson, P.R. Snodin, H.R. Thirsk, EMF measurements of cells employing metal-metal oxide electrodes in aqueous chloride and sulphate electrolytes at temperatures between 25-250${^{\circ}C}$, Electrochemical Acta, 21, 527-533 (1976). https://doi.org/10.1016/0013-4686(76)85143-2
  6. K. Yamanaka, Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices, Japanese Journal of Applied Physics, 28, 632-637 (1989). https://doi.org/10.1143/JJAP.28.632
  7. M.A. Petit, V. Plichon, "Anodic electrodeposition of iridium oxide films" Journal of Electroanalytical Chemistry, 444, 247-252 (1998). https://doi.org/10.1016/S0022-0728(97)00570-6
  8. S. Ardizzone, A. Carugati and S. Trasatti, Properties of thermally prepared iridium dioxide electrodes, J. Electroanal. Chem., 126, 287-293 (1981). https://doi.org/10.1016/S0022-0728(81)80437-8
  9. K. Nishio, T. Tsuchiya, Electrochromic thin films prepared by sol-gel process, Solar Energy Materials and Solar Cells, 68, 279-293 (2001). https://doi.org/10.1016/S0927-0248(00)00362-7
  10. K.Nishio, Y. Watanabe, and T. Tsuchiya, Preparation and properties of electrochromic iridium oxide thin film by sol-gel process, Thin Solid Films, 350, 96-100 (1999). https://doi.org/10.1016/S0040-6090(99)00290-4
  11. J. Livage, Sol-gel synthesis of heterogeneous catalysts from aqueous solutions, Catalysis Today, 41, 3 (1998). https://doi.org/10.1016/S0920-5861(98)00034-0
  12. L.A. Pocrifka, C. Goncalves, P.C. Colpa and E.C. Peeira, Development of $RuO_{2}$- $TiO_{2}$ (70-30) mol% for pH measurements, Sensors and Actuators B, 113, 1012-1016 (2006). https://doi.org/10.1016/j.snb.2005.03.087
  13. M. P. Pechini, USA patent, no. 3.330.697, July, (1967).
  14. G. Papeschi, S. Bordi, C. Beni, I. Ventura, Use of an iridium electrode for direct measurements of pI of proteins after isoelectric focusing in polyacrylamide gel, Biochim. Biophys. Acta, 453, 192 (1976). https://doi.org/10.1016/0005-2795(76)90263-4
  15. K. Kinoshita, M. J. Madou, Electrochemical Measurements on Pt, Ir, and Ti Oxides as pH Probes, J. Electrochem. Soc., 131, 1089 (1984). https://doi.org/10.1149/1.2115755
  16. M. I. Hitchman, S. Ramanathan, A field-induced poising technique for promoting convergence of standard electrode potential values of thermally oxidized iridium pH sensors, Talanta, 39, 137 (1992). https://doi.org/10.1016/0039-9140(92)80008-2
  17. Patrick J. Kinlen, John E. Heider, David E. Hubbard, A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode, Sens. Actuators, 22, 13 (1994). https://doi.org/10.1016/0925-4005(94)01254-7
  18. J.A. Mihell and J.K. Atkinson, Planar thick-film pH electrodes based on ruthenium dioxide hydrate, Sensors and Actuators B, 48, 505-511 (1998). https://doi.org/10.1016/S0925-4005(98)00090-2
  19. Yi-Hung Liao and Jung-Chuan Chou, Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system, Sensors and Actuators B, 128, 603-612 (2008). https://doi.org/10.1016/j.snb.2007.07.023
  20. Robert Koncki and Marco Mascini, Screen-printed ruthenium dioxide electrodes for pH measurements, Analytica Chimica Acta, 351, 143-149 (1997). https://doi.org/10.1016/S0003-2670(97)00367-X
  21. Kenneth G. Kreider, Michael J. Tarlov, and James P. Cline, Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides, Sensors and Actuators B, 28, 167-172 (1995). https://doi.org/10.1016/0925-4005(95)01655-4
  22. E. Pungor, K. Toth and A. Hrabeczy-Pall, Selectivity Coefficients of Ion-Selective Electrodes, Pure & Appl. Chem., 51, 1913-1980 (1979). https://doi.org/10.1351/pac197951091913