DOI QR코드

DOI QR Code

A Study on the Measurements of Beam Wave Propagation and Fluorescence Spectroscopy in Particles Media

입자매질에서 빔파동전파와 형광분광 측정에 관한 연구

  • Kim, Ki-Jun (Dept. of Chemical Engineering, Daejin University) ;
  • Lee, Jou-Youb (Dept. of Disaster Mitigation and Safety Engineering, Jungwon University) ;
  • Sung, Wan-Mo (Dept. of Chemical Engineering, Daejin University)
  • 김기준 (대진대학교 공과대학 화학공학과) ;
  • 이주엽 (중원대학교 방재안전공학과) ;
  • 성완모 (대진대학교 공과대학 화학공학과)
  • Received : 2014.02.11
  • Accepted : 2014.06.23
  • Published : 2014.06.30

Abstract

The influences of fluorescence, scattering, and flocculation in turbid material were interpreted for the scattered fluorescence intensity and wavelength, it has been studied the molecular properties by the spectroscopy of laser induced fluorescence(LIF). The effects of optical properties in scattering media have been found by the optical parameters(${\mu}_s$, ${\mu}_a$, ${\mu}_t$). Flocculation is an important step in many solid-liquid separation processes and is widely used in Photodynamic therapy. The interactions of several colloid particles can come into play which have major effect on the flocculation and LIF process. We measured scattering and fluorescence spectra of the sample for in vitro as function of concentration from lase source to detector. The value of scattering coefficient ${\mu}_s$ is large by means of the increasing particles of scatterer. Therefore, Phorphyrin A is larger than Phorphyrin C in scattering intensity ${\mu}_s$, but Phorphyrin A is smaller than Phorphyrin C in penetration depth ${\delta}$.

혼탁매질에서 형광, 산란과 응집의 영향은 파장과 산란된 형광세기로 나타내는데, laser induced fluorescence(LIF) 분광학에 의한 분자특성으로 나타난다. 산란매질에서 광학적 효과는 광학적 파라미터들(${\mu}_s$, ${\mu}_a$, ${\mu}_t$)에 의해 표현되고 응집은 고-액상 분리공정과 Photodynamic therapy에서 중요하게 활용되고 있다. 따라서 입자가 서로 접근될 때 콜로이드 입자들의 상호작용을 LIF와 응집효과로 분석하였다. 우리는 레이저 광원에서 검출기까지 농도의 함수에 의해 in vitro 시료의 산란과 형광 스펙트라를 측정하였다. 산란계수 ${\mu}_s$는 산란체의 입자가 증가함에 크게 나타났다. 그리하여 Phorphyrin A는 Phorphyrin C보다 산란세기는 증가하였으나, 침투깊이 ${\delta}$는 감소하였다.

Keywords

References

  1. K. J. Kim and K. C. Sung, A Study on Spectra of Laser Induced Fluorscence in Phantom, J. of Korean Oil Chemist' Soc,, 16(4), 329 (1999).
  2. K. J. Kim and K. C. Sung, Monte Carlo Simulation on Light Distribution in Turbid Material, J. of Korean Oil Chemists Soc., 15(4), 11 (1998).
  3. K. J. Kim and K. C. Sung, Studies on Measurements of Optical Parameters in Turbid Material by Light Scattering, J. of Korean Oil Chemists Soc., 12(2), 151 (1995).
  4. S. L. Jacques and S. A. Prahl, Modeling Octical and Thermal Distribution in Tissue During Laser Irradiation, Laser in Surgery and Medicine 6, 494 (1987). https://doi.org/10.1002/lsm.1900060604
  5. B. C. Wilson, Y. D. Park, Y. Hefetz, M. S. Patterson, S. J. Madsen and S. L. Jacqu es, The Potential of Timeresolved Reflectance Measurements for the Noninvasive Determination of Tissue Optical Properties, in Thermal and Optical Interactions with Biological and Related Composite Materials, M. J. Berry and G. M. Harpole, eds., Proc. S. P. I. E., p. 97, (1989).
  6. S. L. Jacques, C. A. Alter, and S. A. Prahl, Angular Dependence of HeNe Laser Light Scattering by Human Dermis, Laser in the Life Science, 1(4), 309 (1987).
  7. T. J. Dougherty, C. J. Gomer, and K. R. Weishaupt, Energetics and Effeciency of Photoinactivation of Murine Tumor Cells Containing Hematoporphyrin, Cancer Research 36, 2330 (1976).
  8. R. R. Alfano, G. C. Tang, A. Pradhan, W. Ran, S. J. Daniel, and E Opher, Fluorescence Spectro from Cancerone and Normal Human Breast and Lung Tissues, IEEE J. Quan. Elec. QE, 23(10), 1806 (1987). https://doi.org/10.1109/JQE.1987.1073234
  9. S. R. Wickramasinghe, Y. Wu, and B. Han, Enhanced Microfiltration of Yeast by Flocculation, Desalination 147, 25, (2002). https://doi.org/10.1016/S0011-9164(02)00566-0
  10. L. O. Poicard, C. J. Gomer, and A. E. Profio, Laser-Induced Hyperthermia of Ocular Tumors, Appl. Opt., 28(12), 2318 (1989). https://doi.org/10.1364/AO.28.002318
  11. M. Winkelmann, B. Chance, and B. C. Wilson, Time Resolved Reflectance and Transmittanance for the Noninvasive Measurement of Tissue Optical Properties, Appl. Opt., 28(12), 2331 (1989). https://doi.org/10.1364/AO.28.002331
  12. K. Lee, I. J. Forbes, and W. H. Betts, Oxygen Dependency of Photocytotoxicity with Hematoporphyrin Derivative, Photochem. Photobiol 39(5), 631 (1984). https://doi.org/10.1111/j.1751-1097.1984.tb03902.x
  13. R. Hilf, P. B. Leakey, S. J. Solltt, and S. L. Gibson, Photodynamic Inactivation of R3230AC Mammary Carcinoma in vitro with HPD: Effects of Dose, Time and Serum on Uptake and Phototoxicity, Photochem. Photobiol. 37(6), 633 (1983). https://doi.org/10.1111/j.1751-1097.1983.tb04532.x
  14. H. Schnecknburger, M. Frenz, Y. Tsnchiya, U.. Denzer, and L. Schleinkofer, Picosecond Fluorescence Microscopy for Measuring Chlorophyll and Porphyrin Components in Conifers and Cultured Cells, Lasers in the Life Science 1(4), 299 (1987).
  15. S. R. Wickramasinghe, Y. Wu, and B. Han, Enhanced Microfiltration of Yeast Flocculation, Desalination, 147, 25 (2002). https://doi.org/10.1016/S0011-9164(02)00566-0