DOI QR코드

DOI QR Code

ASYMPTOTIC EQUIVALENCE BETWEEN TWO LINEAR DYNAMIC SYSTEMS ON TIME SCALES

  • Choi, Sung Kyu (Department of Mathematics Chungnam National University) ;
  • Koo, Namjip (Department of Mathematics Chungnam National University)
  • Received : 2013.08.17
  • Published : 2014.07.31

Abstract

In this paper we investigate asymptotic properties about asymptotic equilibrium and asymptotic equivalence for linear dynamic systems on time scales by using the notion of $u_{\infty}$-similarity. Also, we give some examples to illustrate our results.

Keywords

References

  1. B. Aulbach and S. Hilger, A unified approach to continuous and discrete dynamics, in "Qualitative Theory of Differential Equations"(Szeged, 1988), 37-56, Colloq. Math. Soc. Janos Bolyai, 53, North Holland, Amsterdam, 1990.
  2. B. Aulbach and S. Hilger, Linear dynamic processes with inhomogeneous time scale, in "Nonlinear Dynamics and Quantum Dynamical Systems"(Gaussig, 1990), 9-20, Math. Res. 59, Akademie-Verlag, Berlin, 1990.
  3. M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
  4. M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
  5. S. K. Choi, Y. H. Goo, and N. J. Koo, Variationally asymptotically stable difference systems, Adv. Difference Equ. 2007 (2007), Article ID 35378, 21 pp.
  6. S. K. Choi, Y. H. Goo, and N. Koo, h-Stability of dynamic equations on time scales with nonregressivity, Abstr. Appl. Anal. 2008 (2008), Article ID 632473, 13 pp.
  7. S. K. Choi and N. J. Koo, Variationally stable difference systems by $n_{\infty}$-similarity, J. Math. Anal. Appl. 249 (2000), no. 2, 553-568. https://doi.org/10.1006/jmaa.2000.6910
  8. S. K. Choi and N. Koo, On the stability of linear dynamic systems on time scales, J. Difference Equ. Appl. 15 (2009), no. 2, 167-183. https://doi.org/10.1080/10236190802008528
  9. S. K. Choi, N. J. Koo, and S. Dontha, Asymptotic property in variation for nonlinear differential systems, Appl. Math. Lett. 18 (2005), no. 1, 117-126. https://doi.org/10.1016/j.aml.2003.07.019
  10. S. K. Choi, N. J. Koo, and D. M. Im, Asymptotic equivalence between linear differential systems, Bull. Korean Math. Soc. 42 (2005), no. 4, 691-701. https://doi.org/10.4134/BKMS.2005.42.4.691
  11. S. K. Choi, N. J. Koo, and K. Lee, Asymptotic equivalence for linear differential systems, Commun. Korean Math. Soc. 26 (2011), no. 1, 37-49. https://doi.org/10.4134/CKMS.2011.26.1.037
  12. R. Conti, Sulla $t_{\infty}$-similitudine tra matrici e la stabilita dei sistemi differenziali lineari, Atti. Acc. Naz. Lincei, Rend. Cl. Fis. Mat. Nat. 49 (1955), 247-250.
  13. V. Cormani, Liouville's formula on time scales, Dynam. Systems Appl. 12 (2003), no. 1-2, 79-86.
  14. I. Gohberg, M. A. Kaashoek, and J. Kos, Classification of linear time-varying difference equations under kinematic similarity, Integral Equations Operator Theory 25 (1996), no. 4, 445-480. https://doi.org/10.1007/BF01203027
  15. S. Hilger, Analysis on measure chains - a unified approach to continous and discrete calculus, Results Math. 18 (1990), no. 1-2, 18-56. https://doi.org/10.1007/BF03323153
  16. V. Lakshmikantham and S. Leela, Differential and Integral Inequalites with Theory and Applications, Academic Press, New York and London, 1969.
  17. L. Markus, Continuous matrices and the stability of differential systems, Math. Z. 62 (1955), 310-319. https://doi.org/10.1007/BF01180637
  18. W. F. Trench, On $t_{\infty}$ quasi-similarity of linear systems, Ann. Mat. Pura Appl. 142 (1985), 293-302. https://doi.org/10.1007/BF01766598
  19. W. F. Trench, Linear asymptotic equilibrium and uniform, exponential, and strict stability of linear difference systems, Comput. Math. Appl. 36 (1998), no. 10-12, 261-267. https://doi.org/10.1016/S0898-1221(98)80027-8