
Bull. Korean Math. Soc. 51 (2014), No. 4, pp. 1075–1085
http://dx.doi.org/10.4134/BKMS.2014.51.4.1075

ASYMPTOTIC EQUIVALENCE BETWEEN TWO LINEAR

DYNAMIC SYSTEMS ON TIME SCALES

Sung Kyu Choi and Namjip Koo

Abstract. In this paper we investigate asymptotic properties about as-
ymptotic equilibrium and asymptotic equivalence for linear dynamic sys-
tems on time scales by using the notion of u∞-similarity. Also, we give
some examples to illustrate our results.

1. Introduction

The calculus on time scales was initiated by Aulbach and Hilger in order
to create a theory that can unify and extend discrete and continuous analysis
[1, 2, 15]. The theory on time scales has been developed as a generalization of
both continuous and discrete time theory and applied to many different fields
of mathematics [1, 2, 3, 4].

The notion of similarity is an effective tool to study the theory of stability
for differential systems and difference systems [5, 7, 10, 11, 12, 17, 18, 19].
Markus [17] introduced the notion of kinematic similarity in the set of all
n× n continuous matrices defined on [t0,∞) and showed that the relationship
of kinematic similarity is an equivalence relation preserving the type numbers
of the linear differential systems. Gohberg et al. [14] studied the problem
to classify linear time-varying systems of difference equations under kinematic
similarity. Conti [12] introduced the concept of t∞-similarity in the set of
all n × n continuous matrices defined on R+ = [0,∞) and showed that t∞-
similarity is an equivalence relation preserving strict, uniform and exponential
stability of linear homogeneous differential systems. Choi et al. [9] studied
the variational stability of nonlinear differential systems using the notion of
t∞-similarity. Trench [18] introduced a concept called t∞-quasisimilarity that
is not symmetric or transitive, but still preserves stability properties.

As a discrete analog of Conti’s definition of t∞-similarity, Trench [19] defined
the notion of summable similarity on pairs of m × m matrix functions and
showed that if A and B are summably similar and the linear system ∆x(n) =
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A(n)x(n), n = 0, 1, . . . , is uniformly, exponentially or strictly stable or has
linear asymptotic equilibrium, then the linear system ∆y(n) = B(n)y(n) has
also the same properties. Also, Choi and Koo [7] introduced the notion of
n∞-similarity in the set of all m×m invertible matrices and showed that two
concepts of global h-stability and global h-stability in variation are equivalent
by using the concept of n∞-similarity and Lyapunov functions. Their approach
included most types of stability.

Choi et al. [9, 10, 11] investigated asymptotic equivalence for differential
systems by means of the notions of strong stability and t∞-similarity introduced
by Conti [12]. Trench [19] introduced summable similarity as a discrete analog
of Conti’s definition of t∞-similarity and investigated the various stabilities of
linear difference systems by using summable similarity. Choi et al. [5] studied
the asymptotic property and the h-stability of difference systems via discrete
similarities and comparison principle. For detailed results about the various
stabilities including the notions of h-stability and strong stability of dynamic
systems on time scales, see [6, 8].

In this paper we investigate asymptotic properties about asymptotic equi-
librium and asymptotic equivalence for linear dynamic systems on time scales
by using the notion of u∞-similarity. Also, we give some examples to illustrate
our results.

2. Main results

We refer the reader to Ref. [3, 4] for all the basic definitions and results
on time scales necessary to this work (e.g. delta differentiability, rd-continuity,
exponential function and its properties).

Throughout this paper, we assume that the time scale T (a nonempty closed
subset of R) is unbounded above and the graininess of T is bounded on Tt0 . Here
Tt0 = T ∩ [t0,∞) for each fixed t0 ∈ T. If T has a left-scattered maximum m,
then T

κ = T−{m}. Otherwise, Tκ = T. Assume that Rn is the n-dimensional
real Euclidean space.

Let Mn(R) be the set of all n× n matrices over R and Mn(R) the set of all
n× n invertible matrices over R.

Definition 2.1. An operator A : Tκ → Mn(R) is called regressive if for each
t ∈ T

κ the n× n matrix I + µ(t)A(t) is invertible.

The class of all rd-continuous and regressive operators from T
κ to Mn(R) is

denoted by

CrdR(Tκ,Mn(R)).

We consider two linear dynamic systems

(2.1) x∆(t) = A(t)x(t), t ∈ T,

and

(2.2) y∆(t) = B(t)y(t), t ∈ T,
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where A,B ∈ CrdR(Tκ,Mn(R)).
We consider the adjoint system of (2.1)

(2.3) x∆ = (⊖A)∗(t)x, t ∈ T,

where A∗ denotes the conjugate transpose of a matrix A and (⊖A)(t) = −[I +
µ(t)A(t)]−1A(t).

We note that the solution x(t) of (2.3) with the initial point x(t0) = x0 is
given by

x(t) = Φ⊖A∗(t, t0)x0 = (Φ−1
A (t, t0))

∗x0

and

Φ−1
⊖A∗(t, t0) = Φ∗

A(t, t0), t ∈ Tt0 ,

where ΦA(t) is a fundamental matrix solution for (2.1) and Φ(t,t0)≡Φ(t)Φ(t0)
−1

[15, Theorem 6.2].
Choi and Koo [8] introduced u∞-similarity on time scales in order to unify

(continuous ) t∞-similarity and (discrete) n∞-similarity that preserves the sta-
bility properties for linear dynamics systems on time scales.

Definition 2.2. Let A,B ∈ CrdR(Tκ,Mn(R)) and t0 ∈ T. An operator A is
u∞-similar to an operator B if there exists an absolutely integrable operator
F ∈ Crd(T,Mn(R)), i.e.,

∫∞

t0
|F (t)|∆t < ∞, such that

(2.4) S∆(t) + Sσ(t)B(t)−A(t)S(t) = F (t), t ∈ T
κ,

for both bounded operators S and S−1 ∈ C1
rd(T

κ,Mn(R)).

We introduce the notions of asymptotic equilibrium and asymptotic equiv-
alence for linear dynamic systems on time scales as the notions for differential
systems in [16].

Definition 2.3. System (2.1) is said to have asymptotic equilibrium if there
exists a single ξ ∈ R

n and r > 0 such that any solution x(t, t0, x0) of (2.1) with
|x0| < r satisfies

x(t, t0, x0) = ξ + o(1) as t → ∞, t ∈ Tt0

and for every ξ ∈ R
n, there exists a solution of (2.1) such that satisfies the

above asymptotic relationship.

Definition 2.4. Two systems (2.1) and (2.2) are said to be asymptotically

equivalent if, for every solution x(t) of (2.1), there exists a solution y(t) of (2.2)
such that

x(t) = y(t) + o(1) as t → ∞, t ∈ Tt0

and conversely, for every solution y(t) of (2.2), there exists a solution x(t) of
(2.1) such that the above asymptotic relation holds.



1078 S. K. CHOI AND N. KOO

Remark 2.5 ([5, Example 4.3]). Note that if system (2.1) has asymptotic equi-
librium, then system (2.1) is strongly stable, but the converse does not hold
in general. So, the converse holds under a certain condition, i.e., if system
(2.1) is strongly stable and limt→∞ ΦA(t) = Φ∞ exists, then system (2.1) has
asymptotic equilibrium.

Theorem 2.6 ([8, Theorems 4.3 and 4.9]). For each fixed τ ∈ T the following

statements are equivalent:

(i) System (2.1) is stable together with its adjoint system (2.3).
(ii) There exists a positive constant M such that

|ΦA(t, τ)| ≤ M and |Φ−1
A (t, τ)| ≤ M, t ∈ Tτ .

(iii) There exists a positive constant M such that

|ΦA(t, s)| ≤ M, t, s ∈ Tτ .

(iv) System (2.1) is kinematically similar to x∆ = 0 on Tτ .

Theorem 2.7. System (2.1) has asymptotic equilibrium if and only if

lim
t→∞

ΦA(t)

exists and is invertible, where ΦA(t) is a fundamental matrix solution of system

(2.1).

Proof. Suppose that system (2.1) has asymptotic equilibrium. Then it is easy
to show the existence of limt→∞ ΦA(t, t0) = limt→∞ ΦA(t)ΦA(t0)

−1 = Φ∞.
Let Ei = (0, . . . , 1, . . . , 0)T be the i-th unit vector in R

n for each i =
1, 2, . . . , n. Then there exist the solutions x(t, t0, x0i) of (2.1) such that

lim
t→∞

x(t, t0, x0i) = lim
t→∞

ΦA(t, t0)x0i = Ei, i = 1, 2, . . . , n.

It follows that

lim
t→∞

ΦA(t, t0)[x01 · · ·x0n] = Φ∞[x01 · · ·x0n] = I,

where I is the identity matrix. Thus Φ∞ is invertible.
We easily see that the converse holds. This completes the proof. �

We give an example to illustrate Theorem 2.7.

Example 2.8 ([8, Example 4.17]). Let t0 ∈ T. We consider the linear dynamic
system

(2.5) x∆ = A(t)x =

(

−e−t

2+e−t 0

0 0

)

x, x(t0) = x0, t ∈ Tt0 ,

where A(t) =
(

−e−t

2+e−t 0

0 0

)

∈ CrdR(T,M2(R)). If µ(t) is a nonnegative constant

satisfying µ(t) < 2et+1 for each fixed t ∈ Tt0 , then system (2.5) has asymptotic
equilibrium.
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Proof. A fundamental matrix solution ΦA(t, t0) of (2.5) is given by

ΦA(t, t0) =

(

ep(t, t0) 0
0 1

)

,

where p(t) = −e−t

2+e−t and ep(t, t0) = exp
∫ t

t0

1
µ(τ)Log(1 + µ(τ)p(τ))∆τ . It follows

that

0 < ep(t, t0) = exp

∫ t

t0

1

µ(τ)
Log(1 + µ(τ)p(τ))∆τ(2.6)

≤ exp

∫ t

t0

1

µ(τ)
Log(1 + µ(τ)|p(τ)|)∆τ

≤ exp

∫ t

t0

e−τ

2 + e−τ
∆τ (t ∈ Tt0)

≤ C,

where C is a some positive constant. We see that ep(t, t0) and 1
ep(t,t0)

are

bounded for each t ∈ Tt0 . Thus we have

|ΦA(t, t0)| =

∣

∣

∣

∣

(

ep(t, t0) 0
0 1

)∣

∣

∣

∣

≤ M,

|Φ−1
A (t, t0)| =

∣

∣

∣

∣

(

1 0
0 1

ep(t,t0)

)∣

∣

∣

∣

≤ M, t ∈ Tt0 ,

where M is a positive constant. Thus system (2.5) is strongly stable by Theo-
rem 2.6.

Furthermore, we note that ep(t, t0) is also nondecreasing on Tt0 since the
function 1 + µ(t)p(t) is positive and nondecreasing on Tt0 from the condition
of µ(t). Thus limt→∞ ep(t, t0) exists and is a nonzero constant. In fact, this
implies that limt→∞ ΦA(t, t0) exists and is invertible. Hence it follows from
Theorem 2.7 that (2.5) has asymptotic equilibrium. This completes the proof.

�

Remark 2.9 ([8, Remark 4.18]). We give some remarks about Example 2.8:

(1) If T = R, then a fundamental matrix solution ΦA(t, 0) of linear differ-
ential system x∆ = x′ = A(t)x is given by

ΦA(t, 0) =

(

2+e−t

3 0
0 1

)

, t ∈ R+.

Thus we easily see that

lim
t→∞

ΦA(t, 0) =

(

limt→∞(2+e−t

3 ) 0
0 1

)

=

(

2
3 0
0 1

)

.
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(2) If T = hZ with the positive constant µ(t) = h < 2et+1 for each t ∈ hZ,
then a fundamental matrix solution ΦA(t) of linear difference system
x∆ = x(t + h)− x(t) = A(t)x is given by

ΦA(t, 0) =

(

∏t−h
τ=0(1 −

e−τ

2+e−τ h)
1
h 0

0 1

)

, t ∈ hZ.

We note that
∏t−h

τ=0(1 − e−τ

2+e−τ h)
1
h is bounded and nondecreasing for

each t ∈ hZ since (1− e−τ

2+e−τ h)
1
h is positive and nondecreasing for each

τ ∈ hZ. Thus we have the invertible matrix Φ∞ given by

lim
t→∞

ΦA(t, 0) = lim
t→∞

(

∏t−h
τ=0(1 −

e−τ

2+e−τ h)
1
h 0

0 1

)

=

(

a∞ 0
0 1

)

≡ Φ∞,

where limt→∞

∏t−h
τ=0(1 −

e−τ

2+e−τ h)
1
h = a∞ is positive.

(3) In particular, if T = Z, then a fundamental matrix solution ΦA(t, 0) of
∆x = x(t+ 1)− x(t) = A(t)x is given by

ΦA(t, 0) =

(

∏t−1
τ=0(1−

e−τ

2+e−τ ) 0

0 1

)

, t ∈ Z+.

Note that the invertible matrix Φ∞ is given by

lim
t→∞

ΦA(t, 0) = lim
t→∞

(

∏t−1
τ=0(1−

e−τ

2+e−τ ) 0

0 1

)

=

(

b∞ 0
0 1

)

≡ Φ∞,

where limt→∞

∏t−1
τ=0(1 −

e−τ

2+e−τ ) = b∞ is positive for each t ∈ Z+.

Lemma 2.10 ([13, Corollary 2.4]). Let A ∈ CrdR(Tκ,Mn(R)) be an n × n

matrix-valued function and assume that ΦA(t) is a solution of X∆ = A(t)X.

Then ΦA(t) satisfies Liouville’s formula

detΦA(t) = eq(t, t0) detΦA(t0), t ∈ T,(2.7)

where q(t) = λ1 ⊕ λ2 ⊕ · · · ⊕ λn and each λi, 1 ≤ i ≤ n, is the eigenvalue of

A(t). Here ⊕ is defined by a⊕ b = a+ b+ µ(t)ab.

Remark 2.11 ([3, Theorem 5.28]). When T = R, we have

q(t) = λ1 ⊕ λ2 ⊕ · · · ⊕ λn

= λ1 + λ2 + · · ·+ λn = trA(t).

Also, if A(t) is a regressive 2× 2 matrix-valued function, then

q(t) = trA(t) + µ(t) detA(t).

Theorem 2.12. If system (2.1) has asymptotic equilibrium, then

lim
t→∞

eq(t, t0)

exists. Here q(t) = λ1 ⊕λ2 ⊕ · · · ⊕λn and each λi, 1 ≤ i ≤ n, is the eigenvalue

of A(t).
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Proof. It follows from Lemma 2.10 that ΦA(t) satisfies the Liouville’s formula:

detΦA(t) = detΦA(t0)eq(t, t0), t ∈ Tt0 .

Thus, we have

0 6= detΦ∞ = lim
t→∞

detΦA(t)

= detΦA(t0) lim
t→∞

eq(t, t0).

Hence limt→∞ eq(t, t0) exists. The proof is complete. �

We can obtain the following result as the special case of Theorem 2.12.

Corollary 2.13 ([10, Theorem 3.3]). Suppose that system (2.1) has asymptotic

equilibrium and T = R. Then

lim
t→∞

∫ t

t0

trA(s)ds

exists.

Proof. It follows from Remark 2.11 that we have

lim
t→∞

ep(t, t0) = exp( lim
t→∞

∫ t

t0

trA(s)ds).

From Theorem 2.12, limt→∞

∫ t

t0
trA(s)ds exists. This completes the proof. �

The following example shows that the converse of Corollary 2.13 does not
hold in general:

Example 2.14. Let T = R and consider the linear dynamic system

(2.8) x∆(t) = x′(t) =

(

t 0
0 −t

)

x, t ∈ R+,

where A(t) =
(

t 0
0 −t

)

. A fundamental matrix solution ΦA(t) of system (2.8) is
given by

ΦA(t) =

(

e
t2

2 0

0 e−
t2

2

)

, t ∈ R+.

Then we easily see that limt→∞

∫ t

t0
trA(s)ds = 0 but limt→∞ ΦA(t) does not

exist.

Choi and Koo [8] obtained the following result about the stable stability
that is preserved by the notion of u∞-similarity.

Lemma 2.15 ([8, Theorem 4.13]). Assume that systems (2.1) and (2.2) are

u∞-similar. Then system (2.1) is strongly stable if and only if system (2.2) is
also strongly stable.
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We can obtain the following result that the property of asymptotic equilibra
for linear dynamic systems on time scales is preserved by the notion of u∞-
similarity.

Theorem 2.16. Suppose that A and B are u∞-similar with

lim
t→∞

S(t) = S∞.

Then system (2.1) has asymptotic equilibrium if and only if system (2.2) also

has asymptotic equilibrium.

Proof. Suppose that system (2.1) has asymptotic equilibrium. Then (2.2) is
strongly stable by Lemma 2.15. Also, the assumption on S(t) implies that
limt→∞ S(t) = S∞ is invertible and limt→∞ S−1(t) = S−1

∞ . Since
∫∞

t0
|F (t)|∆t

< ∞, and ΦA(t, s) and ΦB(t, t0) are bounded, we easily see from the Cauchy
property that

lim
t→∞

∫ t

t0

ΦA(t, s)F (s)ΦB(s, t0)∆s

exists. It follows that limt→∞ ΦB(t) = Φ∞ exists and is also invertible. There-
fore (2.2) has asymptotic equilibrium by Theorem 2.7.

The converse holds by the same manner. This completes the proof. �

Remark 2.17. Continuous version and discrete version of Theorem 2.16 were
presented in [10, Theorem 3.6] and [5, Theorem 4.6], respectively.

Now, we can obtain the following result about asymptotic equivalence by
using the concepts of u∞-similarity and asymptotic equilibrium.

Theorem 2.18. Assume that

(i) there exists a positive constant α with | det(ΦA(t))| > α > 0 for each

t ∈ Tt0 and limt→∞ ΦA(t) = Φ∞ exists,

(ii) A and B are u∞-similar with limt→∞ S(t) = S∞.

Then two systems (2.1) and (2.2) are asymptotically equivalent.

Proof. We easily see that (2.1) has asymptotic equilibrium by the fact that
| det(Φ∞)| ≥ α > 0 and Theorem 2.7. It follows from the assumption (ii)
and Theorem 2.16 that (2.2) has asymptotic equilibrium. Let x(t, t0, x0) be
any solution of (2.1). Then limt→∞ x(t) = x∞ exists. For each x∞ ∈ R

n,
the condition on asymptotic equilibrium for (2.2) implies that there exists a
solution y(t) = y(t, t0, y0) of (2.2) such that limt→∞ y(t) = x∞. This implies
that

y(t) = x(t) + o(1) as t → ∞.

By the same manner, we can obtain the converse asymptotic relationship. �

Remark 2.19. Continuous version and discrete version of Theorem 2.18 were
presented in [10, Theorem 3.7] and [5, Theorem 4.7], respectively.
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Finally, we study the asymptotic equivalence between homogeneous and non-
homogeneous linear dynamic systems on time scales by means of asymptotic
equilibrium of homogeneous linear dynamic systems. So we consider the per-
turbed system of (2.1)

(2.9) y∆(t) = A(t)y(t) + g(t), t ∈ Tt0 ,

where A ∈ CrdR(T,Mn(R)) and g : Tt0 → R
n is an rd-continuous function.

Lemma 2.20. Assume that system (2.1) has asymptotic equilibrium and the

perturbed term g in (2.9) is absolutely integrable on Tt0 , i.e.,
∫ ∞

t0

|g(s)|∆s < ∞.

Then system (2.9) also has asymptotic equilibrium.

Proof. It follows that any solution y(t) = y(t, t0, y0) of (2.9) is given by

y(t) = ΦA(t, t0)y0 +ΦA(t, t0)

∫ t

t0

Φ−1
A (s, t0)g(s)∆s,

where ΦA(t) is a fundamental matrix solution of (2.1) and

ΦA(t, t0) = ΦA(t)Φ
−1
A (t0).

Putting p(t) =
∫ t

t0
Φ−1

A (s, t0)g(s)∆s, we easily see that p(t) has a finite limit

as t → ∞ because
∫∞

t0
|g(s)|∆s < ∞ and Φ−1

A (t) is bounded for each t ∈ Tt0 .

Thus y(t) converges to a vector ξ ∈ R
n as t → ∞.

Conversely, let ξ be any vector in R
n. Then there exists a solution y(t) =

y(t, t0, y0) of (2.9) with the initial point y0 = Φ−1
∞ ξ − p∞ such that

lim
t→∞

y(t) = lim
t→∞

[ΦA(t, t0)y0 +ΦA(t, t0)

∫ t

t0

Φ−1
A (s, t0)g(s)∆s]

= Φ∞[y0 + p∞]

= Φ∞[Φ−1
∞ ξ − p∞ + p∞]

= ξ,

where limt→∞ p(t) = p∞ and limt→∞ ΦA(t, t0) = Φ∞ is invertible. This com-
pletes the proof. �

As a consequence of Lemma 2.20 we easily obtain the following result.

Theorem 2.21. Suppose that system (2.1) has asymptotic equilibrium and
∫∞

t0
|g(s)|∆s < ∞ for each fixed t0 ∈ T. Then two systems (2.1) and (2.9) are

asymptotically equivalent.

Proof. Let x(t) be any solution of (2.1). Then we have limt→∞ x(t) = x∞ since
(2.1) has asymptotic equilibrium. Setting y0 = Φ−1

∞ x∞−p∞ as in Lemma 2.20,
there exists a solution y(t, t0, y0) of (2.9) such that

lim
t→∞

[y(t)− x(t)] = Φ∞[y0 + p∞]− x∞
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= Φ∞[Φ−1
∞ x∞ − p∞ + p∞]− x∞

= 0.

Conversely, we easily see that the asymptotic relationship also holds by setting
x0 = y0 + p∞. This completes the proof. �

Remark 2.22. Continuous version and discrete version of Theorem 2.21 were
presented in [10, Theorem 3.9] and [5, Theorem 4.9], respectively.

We give an example to illustrate Theorem 2.21.

Example 2.23. We consider homogeneous dynamic system

(2.10) x∆(t) = A(t)x(t) =

(

−e−t

2+e−t 0

0 0

)

x(t), t ∈ Tt0 ,

and nonhomogeneous dynamic system

(2.11) y∆(t) = A(t)y(t) + g(t) =

(

−e−t

2+e−t 0

0 0

)

y(t) +

(

e−t

e−t

)

, t ∈ Tt0 .

Assume that µ(t) is a nonnegative constant satisfying µ(t) < 2et + 1 for each
t ∈ Tt0 . Then it follows from the simple calculation that two systems (2.10)
and (2.11) are asymptotically equivalent by Example 2.8 and Theorem 2.21.
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