DOI QR코드

DOI QR Code

Perceptual Quality-based Video Coding with Foveated Contrast Sensitivity

Foveated Contrast Sensitivity를 이용한 인지품질 기반 비디오 코딩

  • Received : 2014.03.19
  • Accepted : 2014.07.23
  • Published : 2014.07.30

Abstract

This paper proposes a novel perceptual quality-based (PQ-based) video coding method with foveated contrast sensitivity (FCS). Conventional methods on PQ-based video coding with FCS achieve minimum loss on perceptual quality of compressed video by exploiting the property of human visual system (HVS), that is, its sensitivity differs by the spatial frequency of visual stimuli. On the other hand, PQ-based video coding with foveated masking (FM) exploits the difference of the sensitivity of the HVS between the central vision and the peripheral vision. In this study, a novel FCS model is proposed which considers both the conventional DCT-based JND model and the FM model. Psychological study is conducted to construct the proposed FCS model, and the proposed model is applied to PQ-based video coding algorithm implemented on HM10.0 reference software. Experimental results show that the proposed method decreases bitrate by the average of 10% without loss on the perceptual quality.

본 논문은 FCS(foveated contrast sensitivity)를 이용한 인지품질 기반 비디오 코딩 방법을 제안한다. CS(contrast sensitivity)를 이용한 기존의 인지품질 기반 비디오 코딩 방법은 공간주파수에 따라 시각적 인지능력이 달라지는 인간시각체계(HVS, human visual system)의 특징을 이용하여 비디오 압축 시 인지품질의 손상을 최소화하며, FM(foveated masking)을 이용한 방법에서는 HVS의 중심시(central vision) 와 주변시(peripheral vision)의 차를 이용한다. 본 연구에서는, 정신물리학 실험을 통하여 기존의 DCT(discrete cosine transform)기반 JND(Just-noticeable difference) 모델과 FM이 서로 의존성을 갖고 동시에 고려된 새로운 FCS 모델을 제안하였고, 이를 HM10.0 부호화기에 적용하여 인지품질기반 부호화를 수행하였다. 제안된 방법으로 부호화된 영상은 인지품질 관점에서 동일한 화질을 유지하면서 평균 10%의 비트율 감소를 보였다.

Keywords

References

  1. G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand, "Overview of the High Efficiency Video Coding (HEVC) standard," Vol. 22, No. 12, pp. 1649-1668, Dec. 2012 https://doi.org/10.1109/TCSVT.2012.2221191
  2. H. Oh, W. Kim, "Video processing for human perceptual visual quality-oriented video coding," IEEE Transactions on Image processing, Vol. 22, No. 4, pp. 1526-1535, Dec. 2012
  3. Yang Xia, RuiMin Hu, Zhongyuan Wang, "Perceptual video compression based on DCTdomain foveated JND model," 2011 4th International Congress on Image and Signal Processing, Shanhai, China, 2011 Oct.
  4. H. Oh, W. Kim, "Video Processing for Human Perceptual Visual Quality-Oriented Video Coding," IEEE Transactions on Image Processing, Vol. 22, Issue 4, pp. 1526-1535, April 2013 https://doi.org/10.1109/TIP.2012.2233485
  5. H. H. Chen, Y.-H. Huang, P.-Y. Su, T.-S. Ou, "Improving video coding quality by perceptual rate-distortion optimization," 2010 IEEE International Conference on Multimedia and Expo (ICME), Suntec City, Singapore, pp. 1287-1292, July 2010
  6. D. Zhang, L. Gao, D. Zang, Y. Sun, "A DCT-domain JND model based on visual attention for image," 2013 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Melaka, Malaysia, pp. 1-4, Oct. 2013
  7. S. H. Bae and M. Kim, "A Novel DCT-based JND Model for Luminance Adaptation Effect in DCT Frequency," IEEE Signal Processing Letters, vol. 20, no. 9, pp. 893-896, Sept. 2013 https://doi.org/10.1109/LSP.2013.2272193
  8. Z. Wei, Ngan, K.N., "A temporal just-noticeble distortion profile for video in DCT domain," 15th IEEE International Conference on Image Processing, San Diego, CA, pp. 1336-1339, Oct. 2008
  9. M. J. Nadenau, J. Reichel, M. Kunt, "Wavelet-based color image compression: exploiting the contrast sensitivity function," IEEE Transactions on Image Processing, Vol. 12, No. 1, pp. 58-70, Jan. 2003 https://doi.org/10.1109/TIP.2002.807358
  10. M. G. Albanesi, M. Ferretti, F. Guerrini, "Adaptive image compression based on regions of interest and a modified contrast sensitivity function," 15th International Conference on Pattern Recognition, Barcelona, Spain, Vol. 3, pp. 215-218, Sep. 2000
  11. H. Hadizadeh, I.V., Bajic, "Saliency-preserving video compression," IEEE International Conference on Multimedia and Expo (ICME), Barcelona, Spain, pp. 1-6, July 2011
  12. D. Grois, E. Kaminsky, O. Hadar, "Dynamically adjustable and scalable ROI video coding," IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Shanghai, China, pp. 1-5, March 2010
  13. W. S. Geisler, and J. S. Perry, "A real-time foveated multiresolution system for low-bandwidth video communication," Proceedings of SPIE, vol. 3299, 1998.
  14. L. Itti, C. Koch, E. Niebur, "A model of saliency-based visual attention for rapid scene analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 11, pp. 1254-1259, Nov. 1998 https://doi.org/10.1109/34.730558
  15. Grois, D., Kaminsky, E., Hadar, O., "Dynamically adjustable and scalable ROI video coding," 2010 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Shanghai, China, pp. 1-5, March 2010