DOI QR코드

DOI QR Code

Underwater Acoustic Communication Using Nonlinear Chirp Signal

비선형 chirp 신호를 이용한 수중음향통신

  • Received : 2014.02.26
  • Accepted : 2014.04.28
  • Published : 2014.07.31

Abstract

This paper presents an underwater acoustic communication with nonlinear chirp modulation. The information is carried by the carrier amplitude, frequency or phase in the most common underwater acoustic communications. However, the proposed method includes the information within frequency variation of carrier wave for a symbol. Especially, as carrier wave the hyperbolic frequency modulated signal, one of the nonlinear chirp signal, is used and it is robust in the Doppler channel. The proposed method was analyzed and compared to conventional method by simulation. When the doppler shift existed, the error probability of the proposed method is reduced by 5~12 % than conventional method with linear frequency modulated signal. Sea trial was performed to analyze the performance of the proposed method.

본 논문에서는 수중음향통신에서 비선형 chirp 변조 신호를 사용하는 방법을 제안한다. 과거 대부분의 수중음향통신에서는 반송파의 크기, 주파수 또는 위상에 정보를 실었다. 이에 반해 제안된 방법은 심볼 내에서 반송파의 주파수 변화율에 정보를 포함하게 된다. 특히, 반송파로 비선형 chirp 신호의 일종인 하이퍼볼릭 주파수 변조 신호를 사용하는 경우, 도플러 채널에서 강한 특성을 가진다. 제안된 방법은 시뮬레이션을 통해 기존 방법과 비교 및 분석하였다. 제안된 방식과 선형 주파수 변조 신호를 갖는 기존 방식을 비교하였을 때 도플러 편이가 있는 경우 제안된 방법의 오차 확률이 평균 5~12 % 감소하는 것을 확인할 수 있었다. 또한 제안된 방법의 성능을 분석하기 위해 해상실험이 수행되었다.

Keywords

References

  1. D. B. Kilfoyle and A. B. Baggeroer, "The state of art in underwater acoustic telemetry," IEEE J. Oceanic Eng. 25, 4-27 (2000). https://doi.org/10.1109/48.820733
  2. E. Gallimore, J. Partan, I. Vaughn, S. Singh, J. Shusta, and L. Freitag,"The WHOI micromodem-2 : A scalable system for acoustic communications and networking," Proc. IEEE/MTS Oceans Conference,1-7 (2010).
  3. H. Yan, L. Wan, S. Zhou, Z. Shi, J.H. Cui, J. Huang, and H. Zhou, "DSP based receiver implementation for OFDM acoustic modems," Physical Communication, Elsevier 5, 22-32 (2012). https://doi.org/10.1016/j.phycom.2011.09.001
  4. J. Tao, Y.R. Zheng, C. Xiao, T.C. Yang, and W.B. Yang, "Time-domain receiver design for MIMO underwater acoustic communications," Proc. IEEE/MTS Oceans Conference, 1-6 (2008).
  5. Y. C. Choi and Y. K. Rim, "A Broadband FIR Beamformer for Underwater Acoustic Communications" (in Korean), J. Korea Inst. Infor. Comm. Eng. 10, 2151-2156 (2006).
  6. J. W. Han, Y. J. Son, and K. M. Kim, "Performance analysis of acoustic communication using OFDM modulation in underwater" (in Korean), J. Korean Inst. Nav. Port 34, 769-774 (2010). https://doi.org/10.5394/KINPR.2010.34.10.769
  7. J. W. Han, K. M. Kim, Y. J. Youn, H. W. Moon, S. Y. Chun, and K. Son, "Sea trial results of the direct sequence spread spectrum underwater acoustic communication in the east sea" (in Korean), J. Acoust. Soc. Kr. 31, 441-448 (2012). https://doi.org/10.7776/ASK.2012.31.7.441
  8. J. H. Jeon and S. J. Park, "Design and Implementation of an Acoustic Modem for Small Underwater Devices Operating at Shallow Water" (in Korean), J. Inst. Elec. Infor. Eng. 49, 110-117 (2012). https://doi.org/10.5573/ieek.2012.49.11.110
  9. E. J. Kaminsky and L. Simanjuntak, "Chirp slope keying for underwater communications," Proc. SPIE 5778, 894-905 (2005).
  10. R.A. Altes and E.L. Titlebaum, "Bat signals as optimally Doppler tolerant waveforms," J. Acoust. Soc. Am. 48, 1014-1020 (1970). https://doi.org/10.1121/1.1912222
  11. S. A. Kramer, "Doppler and acceleration tolerances of high-gain, wideband linear FM correlation sonars," Proc. IEEE 55, 627-636 (1967). https://doi.org/10.1109/PROC.1967.5628
  12. P. R. Atkins, T. Collins, and K. G. Foote, "Transmitsignal design and processing strategies for sonar target phase measurement," IEEE J. Sel. Topics Signal Proc. 1, 91-104 (2007). https://doi.org/10.1109/JSTSP.2007.897051
  13. J.D. Rhodes, "Matched-filter theory for Doppler-invariant pulse compression," IEEE Trans. Circuit Theory 19, 53-59 (1972). https://doi.org/10.1109/TCT.1972.1083375