References
- Austin, L. M., Boissy, R. E., Jacobson, B. S. and Smyth, J. R. Jr. (1992) The detection of melanocyte autoantibodies in the Smyth chicken model for vitiligo. Clin. Immunol. Immunopathol. 64, 112-120. https://doi.org/10.1016/0090-1229(92)90188-T
- Brysk, M. M., Newton, R. C., Rajaraman, S., Plott, T., Barlow. E., Bell, T., Penn, P. and Smith, E. B. (1989) Repigmentation of vitiliginous skin by cultured cells. Pigment. Cell Res. 2, 202-207. https://doi.org/10.1111/j.1600-0749.1989.tb00186.x
- Falabella, R., Escobar, C. and Borrero, I. (1989) Transplantation of in vitro-cultured epidermis bearing melanocytes for repigmenting vitiligo. J. Am. Acad. Dermatol. 21, 257-264. https://doi.org/10.1016/S0190-9622(89)70170-5
- Germain, L., Guignard, R., Rouabhia, M. and Auger, F. A. (1995) Early basement membrane formation following the grafting of cultured epidermal sheets detached with thermolysin or Dispase. Burns 21, 175-180. https://doi.org/10.1016/0305-4179(95)80004-8
- Guerra, L., Capurro, S., Melchi, F., Primavera, G., Bondanza, S., Cancedda, R., Luci, A., De Luca, M. and Pellegrini, G. (2000) Treatment of "stable" vitiligo by Timedsurgery and transplantation of cultured epidermal autografts. Arch. Dermatol. 136, 1380-1389.
- Guerret, S., Govignon, E., Hartmann, D. J. and Ronfard, V. (2003) Long-term remodeling of a bilayered living human skin equivalent (Apligraf) grafted onto nude mice: immunolocalization of human cells and characterization of extracellular matrix. Wound Repair Regen. 11, 35-45. https://doi.org/10.1046/j.1524-475X.2003.11107.x
-
Harris, J. E., Harris, T. H., Weninger, W., Wherry, E. J., Hunter, C. A. and Turka, L. A. (2012) A mouse model of vitiligo with focused epidermal depigmentation requires IFN-
$\gamma$ for autoreactive CD8+ Tcell accumulation in the skin. J. Invest. Dermatol. 132, 1869-1876. https://doi.org/10.1038/jid.2011.463 - Hong, W. S., Hu, D. N., Qian, G. P., McCormick, S. A. and Xu, A. E. (2011) Ratio of size of recipient and donor areas in treatment of vitiligo by autologous cultured melanocytes transplantation. Br. J. Dermatol. 165, 520-525.
- Jimbow, K., Roth, S. I., Fitzpatrick, T. B. and Szabo, G. (1975) Mitotic activity in non-neoplastic melanocytes in vivo as determined by histochemical, autoradiographic, and electron microscope studies. J. Cell Biol. 66, 663-670. https://doi.org/10.1083/jcb.66.3.663
- Kim, J. Y., Park, C. D., Lee, J. H., Lee, C. H., Do, B. R. and Lee, A. Y. (2012) Co-culture of melanocytes with adipose-derived stem cells as a potential substitute for co-culture with keratinocytes. Acta Derm. Venereol. 92, 16-23. https://doi.org/10.2340/00015555-1174
- Lam, P. K., Chan, E. S., Liew, C. T., Lau, C. H., Yen, S. C. and King, W. W. (1999) The efficacy of collagen dermis membrane and fibrin on cultured epidermal graft using an athymic mouse model. Ann. Plast. Surg. 43, 523-528. https://doi.org/10.1097/00000637-199911000-00010
- Manning, D. D., Reed, N. D. and Shaffer, C. F. Maintenance of skin xenografts of widely divergent phylogenetic origin of congenitally athymic (nude) mice. (1973) J. Exp. Med. 138, 488-494. https://doi.org/10.1084/jem.138.2.488
- Olsson, M. J. and Juhlin, L. (2002) Long-term follow-up of leucoderma patients treated with transplants of autologous cultured melanocytes, ultrathin epidermal sheets and basal cell layer suspension. Br. J. Dermatol. 147, 893-904. https://doi.org/10.1046/j.1365-2133.2002.04837.x
- Pawelek, J. M. (1979) Evidence suggesting that a cyclic AMP-dependent protein kinase is a positive regulator of proliferation in Cloudman S91 melanoma cells. J. Cell. Physiol. 98, 619-625. https://doi.org/10.1002/jcp.1040980320
- Quezada, N., Machado Filho, C. A., De La Sotta, P. and Uribe, P. (2011) Melanocytes and keratinocytes transfer using sandpaper technique combined with dermabrasion for stable vitiligo. Dermatol. Surg. 37, 192-198. https://doi.org/10.1111/j.1524-4725.2010.01856.x
-
Shi, F. and Erf, G. F. (2012) IFN-
$\gamma$ , IL-21, and IL-10 co-expression in evolving autoimmune vitiligo lesions of Smyth line chickens. J. Invest. Dermatol. 132, 642-649. https://doi.org/10.1038/jid.2011.377 - Swope, V. B., Supp, A. P. and Boyce, S. T. (2002) Regulation of cutaneous pigmentation by titration of human melanocytes in cultured skin substitutes grafted to athymic mice. Wound Repair Regen. 10, 378-386. https://doi.org/10.1046/j.1524-475X.2002.10607.x
- Wu, C. S., Yu, C. L., Wu, C. S., Lan, C. C. and Yu, H. S. (2004) Narrowband ultraviolet-B stimulates proliferation and migration of cultured melanocytes. Exp. Dermatol. 13, 755-763. https://doi.org/10.1111/j.0906-6705.2004.00221.x
Cited by
- In-vitro differentiation of adipose-derived stem cells into melanocytic lineage vol.39, pp.3, 2016, https://doi.org/10.1097/01.EHX.0000489999.79064.71
- The Use of Adipose-Derived Stem Cells in Selected Skin Diseases (Vitiligo, Alopecia, and Nonhealing Wounds) vol.2017, 2017, https://doi.org/10.1155/2017/4740709
- Use of Condensed Nanofat Combined With Fat Grafts to Treat Atrophic Scars vol.20, pp.2, 2014, https://doi.org/10.1001/jamafacial.2017.1329
- Adipose-Derived Stem Cell Coculturing Stimulates Integrin-Mediated Extracellular Matrix Adhesion of Melanocytes by Upregulating Growth Factors vol.27, pp.2, 2014, https://doi.org/10.4062/biomolther.2018.203
- Extracellular fraction of adipose tissue as an innovative regenerative approach for vitiligo treatment vol.28, pp.6, 2019, https://doi.org/10.1111/exd.13954
- Differentiation of adipose-derived stem cells to functional CD105neg CD73low melanocyte precursors guided by defined culture condition vol.10, pp.1, 2014, https://doi.org/10.1186/s13287-019-1364-0
- Repigmentation by combined narrow‑band ultraviolet B/adipose‑derived stem cell transplantation in the mouse model: Role of Nrf2/HO‑1‑mediated Ca2+ homeostasis vol.25, pp.1, 2014, https://doi.org/10.3892/mmr.2021.12522