DOI QR코드

DOI QR Code

Characterization of Probiotic and Functional Properties of Lactobacillus curvatus ML17, a Mukeunji Starter

묵은지 스타터 Lactobacillus curvatus ML17의 생균제적 특성 및 기능성 조사

  • Kim, Hyo Ju (Food Research Institute, Jeonnam Bioindustry Foundation) ;
  • Sung, Hea Mi (Food Research Institute, Jeonnam Bioindustry Foundation) ;
  • Shin, Hyun-Kyung (Food Research Institute, Jeonnam Bioindustry Foundation) ;
  • Kim, Ki Myong (Dept. of Food and Nutrition, Honam University) ;
  • Yang, Eun Ju (Food Research Institute, Jeonnam Bioindustry Foundation)
  • 김효주 ((재)전남생물산업진흥원 식품산업연구원) ;
  • 성혜미 ((재)전남생물산업진흥원 식품산업연구원) ;
  • 신현경 ((재)전남생물산업진흥원 식품산업연구원) ;
  • 김기명 (호남대학교 식품영양학과) ;
  • 양은주 ((재)전남생물산업진흥원 식품산업연구원)
  • Received : 2014.03.20
  • Accepted : 2014.06.11
  • Published : 2014.07.31

Abstract

This study investigated the probiotic and functional characteristics of Mukeunji starter, Lactobacillus curvatus ML17, isolated from Mukeunji. Lb. curvatus ML17 was confirmed as a safe microorganism due to its non-hemolytic activity and non-production of harmful ${\beta}$-glucuronidase and ${\beta}$-glucosidase. Tolerance to artificial gastric and bile juice of Lb. curvatus ML17 was investigated. After incubation in artificial gastric and bile juice, the number of surviving cells was $1.38{\times}10^8$ CFU/mL. According to the results of adhesion assay, this strain also exhibited good adhesion to Caco-2 cells. Lb. curvatus ML17 showed good antimicrobial activity against food borne pathogens, especially Micrococcus luteus, Bacillus cereus, Salmonella enterica subsp. enterica, and Pseudomonas aeruginosa. Cell-free extract of Lb. curvatus ML17 exhibited high levels of DPPH scavenging capacity and inhibitory effects on growth of AGS human gastric adenocarcinoma cells and HT-29 human colon carcinoma cells. These results suggest that Lb. curvatus ML17 has potential for application in functional foods.

묵은지 스타터로 개발된 Lb. curvatus ML17의 생균제적 특성 및 기능성 조사를 통하여 기능성 소재로서의 개발 가능성을 검토하였다. Lb. curvatus ML17은 용혈현상을 일으키지 않았으며 ${\beta}$-glucosidase와 ${\beta}$-glucuronidase의 발암효소 활성이 없는 것으로 나타나 균주에 대한 안전성을 확인하였다. 장내 생존성 확인 실험에서는 인공위액에서 2시간 처리한 다음 인공담즙에서 24시간 처리한 결과 초기 균수 대비 12.30%의 생존율을 나타내었다. Caco-2 cell에 대한 부착율은 초기 접종균수가 많을수록 높게 나타났으며, $5.66{\times}10^9$ CFU/mL로 처리 시 17.31%의 부착율을 나타냈는데 20.78%의 부착율을 나타낸 양성 대조군 Lb. rhamnosus GG에 근접하게 높은 부착율을 나타내어 장내환경에서 바람직한 작용을 할 수 있음을 보여주었다. 유해균주에 대한 생육저해 활성 측정에서는 Micrococcus luteus, Bacillus cereus, Salmonella enterica subsp. enterica, Pseudomonas aeruginosa에 대하여 우수한 항균 활성을 나타내었다. DPPH radical 소거능을 이용한 항산화 활성 측정 결과 72.88%로 양성 대조군인 0.1 mg/mL ascorbic acid보다 높은 free radical 소거능을 나타내었다. AGS 위암세포 및 HT-29 결장암세포에 대한 성장 억제 효과에서는 Lb. curvatus ML17의 배양 상등액 $80{\mu}L/mL$ 처리 시 각각 82.91% 및 79.35%의 암세포 성장 억제 효과를 나타내었다. 이와 같은 결과로 Lb. curvatus ML17이 묵은지를 포함한 발효스타터로 사용되었을 경우 식품의 보존성 향상과 품질 유지 및 균주에 의한 건강 기능성을 부여할 수 있으며 식품, 사료, 의약 분야의 다양한 산업적 활용이 기대된다.

Keywords

References

  1. Sandire WE, Muralidhara KS, Elliker PR, England DC. 1972. Lactic acid bacteria in food and health; a review with special reference to enteropathogenic Escherichia coli as well as certain enteric diseases and their treatment with antibiotics and lactobacilli. J Milk Food Technol 35: 691-702. https://doi.org/10.4315/0022-2747-35.12.691
  2. Yu JJ, Park HJ, Kim SG, Oh SH. 2009. Isolation, identification, and characterization of Weissella strains with high ornithine producing capacity from kimchi. Korean J Microbiol 45: 339-345.
  3. Chung HJ, Kim HR, Yoo MJ. 2005. Changes in texture and sensory properties of low-temperature and long-term fermented Baechu kimchi during the fermentation. Korean J Food Culture 20: 426-432.
  4. Lee KH, Park JY, Jeong SJ, Kwon GH, Lee HJ, Chang HC, Chung DK, Lee JH, Kim JH. 2007. Characterization of paraplantaricin C7, a novel bacteriocin produced by Lactobacillus paraplantarum C7 isolated from kimchi. J Microbiol Biotechnol 17: 287-296.
  5. Kang MR, Kim DR, Kim TW, Park SH, Kim HJ, Jang JY, Han ES. 2012. Selection of probiotic bacteria from Yulmoo Kimchi using a stimulated human intestinal model system. J Korean Soc Food Sci Nutr 41: 396-401. https://doi.org/10.3746/jkfn.2012.41.3.396
  6. Lim SM. 2010. Resistance to reactive oxygen species and antioxidant activities of some strains of lactic acid bacteria from the mustard leaf kimchi. Korean J Microbiol 46: 375-382.
  7. Shin K, Chae O, Park I, Hong S, Choe T. 1998. Antitumor effects of mice fed with cell lysate of Lactobacillus plantarum isolated from Kimchi. Korean J Biotechnol Bioeng 13: 357-363.
  8. Yu MH, Im HG, Im NK, Hwang EY, Choi JH, Lee EJ, Kim JB, Lee IS, Seo HJ. 2009. Anti-hypertensive activities of Lactobacillus isolated from kimchi. Korean J Food Sci Technol 41: 428-434.
  9. Yoon JY, Jung KO, Kim SH, Park KY. 2004. Antiobesity effect of baek-kimchi (whitish baechu kimchi) in rats fed high fat diet. J Food Sci Nutr 9: 259-264. https://doi.org/10.3746/jfn.2004.9.3.259
  10. Lee IH, Lee SH, Lee IS, Park YK, Chung DK, Choue R. 2008. Effects of probiotic extracts of kimchi on immune function in NC/Nga mice. Korean J Food Sci Technol 40: 82-87.
  11. Kim HJ, Shin HK, Yang EJ. 2013. Production and fermentation characteristics of mukeunji with a mixed starter. J Korean Soc Food Sci Nutr 42: 1467-1474. https://doi.org/10.3746/jkfn.2013.42.9.1467
  12. Ji SH, Han WC, Lee JC, Cheong C, Kang SA, Lee JH, Jang KH. 2009. Effect of low temperature on the qualities of long-term fermented kimchi (Korean pickled cabbage). Korean J Food Preserv 16: 804-809.
  13. Lee JJ, Jung HO, Lee MY, Chang HC. 2012. Characteristics of mandu with ripened Korean cabbage kimchi. Korean J Food Preserv 19: 209-215. https://doi.org/10.11002/kjfp.2012.19.2.209
  14. Kim SE, Kim YH, Lee H, Kim DO, Kim HY. 2012. Probiotic properties of lactic acid bacteria isolated from mukeunji, a long-term ripened kimchi. Food Sci Biotechnol 21: 1135-1140. https://doi.org/10.1007/s10068-012-0148-4
  15. Kim DS, Cho HW, Kim DH, Oh KH. 2013. Functional characterization of Lactobacillus sakei JK-17 isolated from longterm fermented Kimchi, Muk Eun Ji. Korean J Biotechnol Bioeng 28: 18-23.
  16. Kobayashi Y, Tohyama K, Terashima T. 1974. Studies on biological characteristics of Lactobacillus. II. Tolerance of the multiple antibiotic resistance strain Lactobacillus casei PSR 3002 to artificial digestive fluids. Japan J Bacteriol 29: 691-697. https://doi.org/10.3412/jsb.29.691
  17. Yang EJ, Chang HC. 2007. Characterization of bacteriocinlike substances produced by Bacillus subtilis MJP1. Kor J Microbiol Biotechnol 35: 339-346.
  18. Brand-Williams W, Cufelier ME, Berset C. 1995. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  19. Cederbaum AI, Lu Y, Wu D. 2009. Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 83: 519-548. https://doi.org/10.1007/s00204-009-0432-0
  20. Hawksworth G, Drasar BS, Hill MJ. 1971. Intestinal bacteria and the hydrolysis of glycosidic bonds. J Med Microbiol 4: 451-459. https://doi.org/10.1099/00222615-4-4-451
  21. Nanno M, Morotomi M, Takayama H, Kuroshima T, Tanaka R, Mutai M. 1986. Mutagenic activation of biliary metabolites of benzo(a)pyrene by $\beta$-glucuronidase-positive bacteria in human faeces. J Med Micribiol 22: 351-355. https://doi.org/10.1099/00222615-22-4-351
  22. Cumming JH, Macfarlane GT. 1991. The control and consequences of bacterial fermentation in the human colon. J Appl Microbiol 70: 443-459.
  23. Goldin BR. 1990. Intestinal microflora: metabolism of drugs and carcinogens. Ann Med 22: 43-48. https://doi.org/10.3109/07853899009147240
  24. EFSA. 2007. Introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA J 587: 1-16.
  25. Hebert EM, Saavedra L, Taranto MP, Mozzi F, Magni C, Nader ME, Font de Valdez G, Sesma F, Vignolo G, Raya RR. 2012. Genome sequence of the bacteriocin-producing Lactobacillus curvatus strain CRL705. J Bacteriol 194: 538-539. https://doi.org/10.1128/JB.06416-11
  26. Casaburi A, Di Monaco R, Cavella S, Toldrá F, Ercolini D, Villani F. 2008. Proteolytic and lipolytic starter cultures and their effect on traditional fermented sausages ripening and sensory traits. Food Microbiol 25: 335-347. https://doi.org/10.1016/j.fm.2007.10.006
  27. Castellano P, Gonzalez C, Carduza F, Vignolo G. 2010. Protective action of Lactobacillus curvatus CRL705 on vacuum- packaged raw beef. Effect on sensory and structural characteristics. Meat Sci 85: 394-401. https://doi.org/10.1016/j.meatsci.2010.02.007
  28. Hong HJ, Kim E, Cho D, Kim TS. 2010. Differential suppression of heat-killed lactobacilli isolated from kimchi, a Korean traditional food, on airway hyper-responsiveness in mice. J Clin Immunol 30: 449-458. https://doi.org/10.1007/s10875-010-9375-8
  29. Park DY, Ahn YT, Park SH, Huh CS, Yoo SR, Yu R, Sung MK, McGregor RA, Choi MS. 2013. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8: e59470. https://doi.org/10.1371/journal.pone.0059470
  30. Cebrian R1, Banos A, Valdivia E, Perez-Pulido R, Martinez-Bueno M, Maqueda M. 2012. Characterization of functional, safety, and probiotic properties of Enterococcus faecalis UGRA10, a new AS-48-producer strain. Food Microbiol 30: 59-67. https://doi.org/10.1016/j.fm.2011.12.002
  31. Park CW, Youn M, Jung YM, Kim H, Jeong Y, Lee HK, Kim HO, Lee I, Lee SW, Kang KH, Park YH. 2008. New functional probiotic Lactobacillus sakei probio 65 alleviates atopic symptoms in the mouse. J Med Food 11: 405-412. https://doi.org/10.1089/jmf.2007.0144
  32. Lee NK, Kim HW, Choi SY, Paik HD. 2003. Some probiotic properties of some lactic acid bacteria and yeasts isolated from jeot-gal. Kor J Microbiol Biotechnol 31: 297-300.
  33. Gilliland SE, Staley TE, Bush LJ. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J Dairy Sci 67: 3045-3051. https://doi.org/10.3168/jds.S0022-0302(84)81670-7
  34. Ann YG. 2011. Probiotic lactic acid bacteria. Korean J Food & Nutr 24: 817-832. https://doi.org/10.9799/ksfan.2011.24.4.817
  35. Lehto EM, Salminen S. 1997. Adhesion of two Lactobacillus strains, one Lactococcus, and one Propionibacterium strain to cultured human intestinal Caco-2 cell line. Biosci Microflora 16: 13-17. https://doi.org/10.12938/bifidus1996.16.13
  36. Lee J. 2005. Adhesion of kimchi Lactobacillus strains to Caco-2 cell membrane and sequestration of aflatoxin B1. J Korean Soc Food Sci Nutr 34: 581-585. https://doi.org/10.3746/jkfn.2005.34.5.581
  37. Lim KS, Huh CS. 2006. Adhesion of bifidobacteria to Caco-2 cells and in relation to cell surface hydrophobicity. Korean J Food Sci Ani Resour 26: 497-502.
  38. Reis JA, Paula AT, Casarotti SN, Penna ALB. 2012. Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Eng Rev 4: 124-140. https://doi.org/10.1007/s12393-012-9051-2
  39. Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, Niu C, Yang Z, Wang Q. 2012. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem 135: 1914-1919. https://doi.org/10.1016/j.foodchem.2012.06.048
  40. Zitzelsberger W, Götz F, Schleifer KH. 1984. Distribution of superoxide dismutases, oxides, and NADH peroxides and various streptococci. FEMS Microbiol Lett 21: 243-246. https://doi.org/10.1111/j.1574-6968.1984.tb00218.x
  41. Shimamura S, Abe F, Ishibashi N, Miyakawa H, Yaeshima T, Araya T, Tomita M. 1992. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J Dairy Sci 75: 3296-3306. https://doi.org/10.3168/jds.S0022-0302(92)78105-3
  42. Kim HS, Ham JS. 2003. Antioxidative ability of lactic acid bacteria. Korean J Food Sci Ani Resour 23: 186-192.
  43. Kato I, Kobayashi S, Yokokura T, Mutai M. 1981. Antitumor activity of Lactobacillus casei in mice. Gann 72: 517-523.
  44. Friend BA, Shahani KM. 1984. Antitumor properties of lactobacilli and dairy products fermented by lactobacilli. J Food Prot 47: 717-723. https://doi.org/10.4315/0362-028X-47.9.717
  45. Yeo MH, Kim DM, Kim YH, Kim JH, Baek H, Chung MJ. 2008. Antitumor activity of CBT-AK5 purified from Lactobacillus casei against Sarcoma-180 infected ICR mice. Korean J Dairy Sci Technol 26: 23-30.
  46. Wang K, Li W, Rui X, Chen X, Jiang M, Dong M. 2014. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int J Biol Macromol 63: 133-139. https://doi.org/10.1016/j.ijbiomac.2013.10.036
  47. Uccello M, Malaguarnera G, Basile F, D'agata V, Malaguarnera M, Bertino G, Vacante M, Drago F, Biondi A. 2012. Potential role of probiotics on colorectal cancer prevention. BMC Surgery 12(Suppl 1): S35.