DOI QR코드

DOI QR Code

Optimal Medium Composition of Cauliflower Mushroom (Sparassis latifolia) Cultivation Using Douglas Fir Wood Chip and Comparison of The β-glucan Contents of The Fruiting Body

미송톱밥을 이용한 꽃송이버섯 재배의 최적 배지 조성과 버섯의 β-glucan 함량 비교

  • Received : 2014.01.22
  • Accepted : 2014.04.16
  • Published : 2014.07.25

Abstract

Functional effects of cauliflower mushroom (Sparassis latifolia) have been magnified by various media and internal and external research papers, recently. So, optimum condition of wood chip particle size and cultivation method of high ${\beta}$-glucan content for bulk cultivation generalization of cauliflower mushroom farms researched. As a result, T7 (1~2 mm 25%, 2~4 mm 50%, over 4 mm 25%) media as mixed media of certain ratio of particle size, showed excellent growth at $11.5{\pm}1.0$ cm / 44 days. Also, production of fruit body found higher than control and marketable pileus part took 85% ratio. The ${\beta}$-glucan content at media composition condition showed 1.4~2.4 times higher content in stipe part than pileus part. Also, PCF300 medium found 59.5% highest ${\beta}$-glucan content in stipe part. While ${\beta}$-glucan content showed 33.0% low content in pileus part. Therefore it needed additional study that ${\beta}$-glucan content improved in pileus part. In conclusion, production of high ${\beta}$-glucan content cauliflower mushroom was possible by T7 condition (wood chip particle size: 1~2 mm 25%, 2~4 mm 50% and over 4 mm 25%, composition: corn powder, flour and 300 ppm yeast).

최근 다양한 언론매체 및 국내외 연구논문들을 통해 꽃송이버섯의 기능성이 부각되고 있다. 이에 꽃송이버섯의 농가 대량재배 일반화를 위하여 최적톱밥 입자크기 및 ${\beta}$-glucan 함량이 높은 재배법 연구를 수행한 결과 T7 (1~2 mm 25%, 2~4 mm 50%, 4 mm 이상 25%) 배지와 같이 입자크기가 일정비율로 혼합된 배지에서 $11.5{\pm}1.0$ cm/44 days로 비교적 우수한 균사생장을 보였으며 자실체생산 역시 대조구보다 높은 $142.9{\pm}17.7g$의 생중량으로 상품성이 있는 꽃부분이 85%의 비율을 차지하였다. 배지조성 조건에 따른 ${\beta}$-glucan 함량은 모든 자실체에서 꽃부분에 비해 기부가 1.4~2.4배의 높은 함량을 보였고 이 중 이스트 300 ppm이 첨가된 PCF300 (미송 + 옥수수분말 + 소맥분 + 이스트 300 ppm) 배지의 꽃송이버섯 기부가 59.5%로 가장 높은 ${\beta}$-glucan 함량을 나타냈다. 그러나 꽃부분에서는 비교적 낮은 33.0%의 함량을 보여 꽃부분의 ${\beta}$-glucan 함량을 높일 수 있는 추가적인 연구가 필요할 것으로 사료된다. 따라서 본 연구결과를 토대로 꽃송이버섯 재배시 T7조건인 1~2 mm 미송톱밥 25%, 2~4 mm 미송톱밥 50%, 4 mm 이상 미송톱밥 25%의 비율로 톱밥입자 크기를 조절한후 옥수수분말과 소맥분을 첨가하여 배지조제후 이스트 300 ppm첨가하면 ${\beta}$-glucan 함량이 높은 꽃송이버섯 생산이 가능할 것으로 사료된다.

Keywords

References

  1. Cheong, J.C., Park, J.S., Hong, I.P., Seok, S.J., Jhune, C.S., Lee, C.J. 2008. Cultural characteristics of cauliflower mushroom, Sparassis crispa. 36(1): 16-21. https://doi.org/10.4489/KJM.2008.36.1.016
  2. Cho, Y.J., Kim, H.A., Bang, M.A., Kim, E.H. 2002. Effects of dietary mushroom on blood glucose levels, lipid concentrations and glutathione enzymes in streptozotocin-induced diabetic rats. Journal of Nutrition 35: 183-191.
  3. Ham, S.S., Oh, S.W., Kim, Y.K., Shin, K.S.. 2003. Antimutagenic and cytotoxic effects of ethanol extract from the Inonotus obliquus. Journal of Nutrition 34: 1088-1094. https://doi.org/10.3746/jkfn.2003.32.7.1088
  4. Harada, T., Miura, N.N., Adachi, Y., Nakajima, M., Yadomae, T., Ohno, N. 2002. IFN-$\gamma$ induction by SCG, 1,3-$\beta$-D-glucan from Sparassis crispa, DBA/2 mice in vitro. Journal of Interferon & Cytokine Research. 22: 1227-1239. https://doi.org/10.1089/10799900260475759
  5. Ikekawa, T., Nakanishi, M., Uehara, N., Chihara, G., Fukuoka, F. 1968. Antitumor action of some basidiomycetes, especially Phellinus linteus. Gann. 59: 155-157.
  6. Kim, H.G., Lee, I.S. 2004. Antimutagenic and cytotoxic effects of Korean wild mushrooms extracts. Korean Journal of Food Science and Technology 36: 662-668.
  7. Kim, H.J., Kim, H.J., Jun, B.S., Cha, J.Y., Kim, H.K., Cho, Y.S. 2001. Analysis of $\gamma$-aminobutyric acid concentrations in Korean plants and mushrooms. Journal of Life Science 11: 537-542.
  8. Kim, K.J. 2010. Optimization for $\beta$-glucan extraction form Sparasis crispa using response surface methodology. MS thesis. Hanyang University, Seoul, Korea.
  9. Lee, J.H., Cho, S.M., Song, K.S., Han, S.B., Kim, H.M., Hong, N.D., Yoo, I.D. 1996. Immunostimulating activity and characterization of polysaccharides from mycelium of Phelliuns linteus. Journal of Microbiology and Biotechnology 6: 213-218.
  10. Lee, Y.S., Han, J.Y., Joo, E.Y., Shin, S.R., Kim, N.W. 2005. Study on the anti-tumor effects of extracts from Lepista nuda mushroom. Journal of the Korean Society of Food Science and Nutrition 34: 317-322. https://doi.org/10.3746/jkfn.2005.34.3.317
  11. Lowry, V.K., Farnell, M.B., Ferro, P.J., Swaggerty, C.L., Bahl, A., Kogut, M.H. 2005. Purified beta-glucan as an abiotic feed additive up-regulates the innate immune response in immature chickens against Salmonella enteric serovar Enteritidis. International Journal of Food Microbiology 98: 309-318. https://doi.org/10.1016/j.ijfoodmicro.2004.06.008
  12. Nanda, J., Kuroda, H. 1998. Potentiation of hostmediated antitumor activity by orally administered mushroom (Agaricus bisporus) fruit bodies. Chemical and Pharmaceutical Bulletin. 36: 1437-1444.
  13. Oh, D.S. 2003. Studies on the optimal cultural media and conditions for mycelial growth of Sparassis crispa (Wulf.) Fr. Department of Forestry graduate School of Chonnam National University. 33.
  14. Ohno, N., Miura, N.N., Nakajima, M., Yadomea, T. 2000. Antitumor 1,3-$\beta$-glucan from cultured fruit body of Sparassis crispa. Biological and Pharmaceutical Bulletin. 23: 866-872. https://doi.org/10.1248/bpb.23.866
  15. Park, H., Lee, B.H., Ka, K.H., Bak, W.C., Oh, D.S., Park, J.M., Chun, W.J. 2006. Cultivation of cauliflower mushroom (Sparassis crispa) by use of steam-treated coniferous sawdusts. Journal of The Korean Wood Science Technology 34(3): 84-89.
  16. Park, H., Ryu, S.R., Ka, K.H. 2011. Cultivation of Sparassis crispa on several kinds medium density and particle size of sawdust-based medium made of Larix kaempferi. Journal of The Korean Wood Science Technology 39(1): 68-74. https://doi.org/10.5658/WOOD.2011.39.1.68
  17. Park, M.A., Jeong, Y.S., Chum, G.T., Cha, Y.S. 2009. antihyperlipidemic and glycemic control effects of mycelia of Inonotus obliquus including protein bound polysaccharides extract in C57BL/6J mice. Journal of Food Nutrition. 38: 667-673. https://doi.org/10.3746/jkfn.2009.38.6.667
  18. Seo, H.D., Ryu, R., Ka, K.H., Park, H. 2013. Effects of ultraviolet and temperature treatments to improve $\beta$-glucan contents of the fruiting body of Sparassis latifolia. 2013 Korean Institute of Forest Recreation. 580-583.
  19. Shim, J.O., Son, S.G., Yoon, S.O., Lee, Y.S., Lee, T.S., Lee, S.S., Lee, K.D., Lee, M.W. 1998. The optimal factors for the mycelial growth of Sparassis crispa. Korean Journal of Mycology 26(1): 39-46.
  20. Shin, H.J., Oh, D.S., Lee, H.D., Kang, H.B., Lee, C.W., Cha, W.S. 2007. Analysis of mineral, amino acid and vitamin contents of fruiting body of Sparassis crispa. Journal of Life Sciences 17: 1290-1293. https://doi.org/10.5352/JLS.2007.17.9.1290
  21. Yamamoto, K., Nishikawa, Y., Kimura, T., Dombo, M., Matsuura, N., Sugitachi, A. 2007. Antitumor activities of low molecular weight fraction derived from the cultured fruit body of Sparassis crispa in tumor-bearing mice. Journal of the Japanese Society for Food Science and Technology 54: 419-423. https://doi.org/10.3136/nskkk.54.419
  22. Yim, S.B., Kim, M.O., Kim, S.J. 1991. Determination of dietary fiber contents in mushrooms. Journal of Food Science 7: 69-76.

Cited by

  1. Inhibitory effect of mushrooms extract on TNF-α/INF-γ induced-cytokine in human keratinocytes, HaCaT vol.13, pp.3, 2015, https://doi.org/10.14480/JM.2015.13.3.170
  2. Ergosterol peroxides from the fruit body of Sparassis crispa vol.59, pp.4, 2016, https://doi.org/10.3839/jabc.2016.053
  3. Component analysis and immuno-stimulating activity of Sparassis crispa stipe vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.515
  4. In vitro anti-cancer activity of hydrophobic fractions of Sparassis latifolia extract using AGS, A529, and HepG2 cell lines vol.12, pp.4, 2014, https://doi.org/10.14480/JM.2014.12.4.304
  5. Preparation of fermentation broth of Sparassis latifolia containing soluble β-glucan using four Lactobacillus species vol.13, pp.1, 2015, https://doi.org/10.14480/JM.2015.13.1.50