DOI QR코드

DOI QR Code

Performance Improvement based on the Teaching Control for Sweeping Robot

연마로봇의 교시기반 제어에 의한 성능개선

  • Jin, Taeseok (Department of Mechatronics Engineering, Dongseo University)
  • Received : 2014.02.28
  • Accepted : 2014.03.31
  • Published : 2014.07.31

Abstract

In this research, we describe teaching based sweeping control for grinder robot has been proposed as a system which is suitable to work utilizing pressure sensitive alternative to human. Teaching method is used for grinder robots operations because of their position accuracy, path accuracy, and machining reaction force. A grinder robot for two-dimensional iron plate was developed on the basis of an force sensor based teaching method. An automatic-path-generation method and experimental results using specific points was adopted to reduce the number of teaching points and time. And also, in order to determine the proper machining conditions, various machining conditions such as grinder-wheel rotation speed and robot moving speed, were evaluated.

본 논문은 산업용 로봇을 위한 힘 피드백 제어 기반의 연마면의 보정과 작업자의 감각을 기반으로 한 정확한 연마면 작업을 대체하기 위한 교시방법을 적용한 연마 결과를 제시하였다. 교시방법은 연마작업의 위치, 경로, 반응에 대한 정밀도 개선을 위해서 연마로봇에 적용하였다. 힘 센서 기반의 교시방법에 의해 연마가 가능한 선박용 연마로봇을 제시하였고, 힘 센서에 의한 교시방법을 연마로봇에 적용하여 실험한 결과를 제시함으로써 그 유효성을 검증하였다. 또한, 로봇교시 포인터의 수를 줄이기 위하여 가공면의 특이점들만을 이용하여 곡면 가공이 가능하도록 로봇 궤적을 생성하는 방안을 제시하여 실험결과를 제시하였다.

Keywords

References

  1. S.M. Abbas, S. Hassan, J. W. Yun, "Augmented reality based teaching pendant for industrial robot," in Proceeding of the 12th International Conference on Control, Automation and Systems (ICCAS), pp. 2210-2213, 2012.
  2. H. Fukui, S. Yonejima, M. Yamano, M. Dohi, M. Yamada, T. Nishiki, "Development of teaching pendant optimized for robot application," 2009 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), pp. 72-77, 2009.
  3. X. Ren, B. Kuhlenkotter, H. Muller. "Simulation and verification of belt grinding with industrial robots," Machine Tools & Manufacture, vol. 46, pp.708-715, 2006. https://doi.org/10.1016/j.ijmachtools.2005.07.033
  4. Yunquan Sun, David J. Giblin, Kazem Kazerounian, "Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques," Robotics and Computer-Integrated Manufacturing, vol. 25, pp. 204-210, 2009. https://doi.org/10.1016/j.rcim.2007.11.005
  5. Taeseok Jin, "Appling of Force Control of the Robotic Sweeping Machine for Grinding" Journal of the Korea Institute of Information and Communication Engineering, vol. 18, no.2, pp. 399-406, Mar. 2014. https://doi.org/10.6109/jkiice.2014.18.2.276
  6. NAGATA Fusaomi, WATANABE Keigo, "A Teaching System of Force Control Using a Game Joystick for a Polishing Robot (in Japanese)" Transactions of the Japan Society of Mechanical Engineers. vol. 67, no. 655, pp.767- 774, Mar. 2001.
  7. Narikiyo, T. Kawanishi, M. & Nakagawa, M, "Robust Adaptive Position/Force Control of Mobile Manipulators with Dynamic Uncertainties," in Proceedings of IASTED CA2009, pp. 264-269, 2009.
  8. Narikiyo, T. Kawanishi, M. & Mizuno, T, "Robust Adaptive Position/Force Control of Mobile Manipulators with Kinematic and Dynamic Uncertainties,"in Proceedings of ICROS-SICE International Joint Conference, pp. 4704- 4709, 2009.
  9. Zhao Yang, Zhao Ji, Zhang Lei, "Robotic blade grinding based on reverse engineering," Journal of Jilin University (Engineering and Technology Edition), vol. 39, no. 5, pp.1176-1180, 2009.
  10. Laurene V. Fausett, Applied Numerical Analysis Using Matlab, Prentice, 2007.