DOI QR코드

DOI QR Code

Synthesis of Substituted Biarylmethanol via Ferrocenyloxime Palladacycles Catalyzed Suzuki Reaction of Chlorophenylmethanol in Water

  • Li, Hong-Mei (Department of Life Science, Luoyang Normal University) ;
  • Feng, Ai-Qing (Department of Life Science, Luoyang Normal University) ;
  • Lou, Xin-Hua (College of Chemistry and Chemical Engineering, Luoyang Normal University)
  • Received : 2014.03.11
  • Accepted : 2014.04.09
  • Published : 2014.08.20

Abstract

Keywords

Experimental

Materials and Measurement. The chloride-bridged palladacyclic dimer 1 was prepared according to published procedures.18 All other chemicals were used as purchased. Elemental analyses were determined with a Thermo Flash EA 1112 elemental analyzer. IR spectra were collected on a Bruker VECTOR22 spectrophotometer using KBr pellets. NMR spectra were recorded on a Bruker DPX-400 spectrometer in CDCl3 with TMS as an internal standard. Mass spectra were measured on a LC-MSD-Trap-XCT instrument. Crystallographic data were collected on a Bruker SMART APEX-II CCD diffractometer. CCDC reference number 625798 for 2. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc. cam.ac.uk/data_request/cif.

[PdCl{[(η5-C5H5)]Fe[(η5-C5H3)-C(CH3)=NOH](DCPAB)] (2): A solution of 1 (0.1 mmol) and DCPAB (0.20 mmol) in CH2Cl2 (10 mL) was stirred at room temperature for 30 min. The product was separated by passing through a short silicagel column with CH2Cl2/ethyl acetate (1:1, v/v) as eluent. The second band was collected and afforded complex 2. Red solid, 89% yield. Found: C, 58.92; H, 6.10; N 3.92. Calc. for C38H48ClFeN2OPPd: C, 58.70; H, 6.22; N, 3.73%. IR (KBr, cm−1): 2925, 2851, 1599 (C=N), 1447, 1315, 1264, 1106, 1052, 1002, 808, 752.1H NMR (400 MHz, CDCl3) δ 9.89 (1H, brs, OH), 7.98 (1H, m, ArH), 7.21-7.37 (5H, m, ArH), 7.04-7.09 (2H, m, ArH), 4.24 (1H, s, C5H3), 4.07-4.14 (6H, m, C5H5+C5H3), 3.92 (1H, s, C5H3), 2.56 (3H, s, CH3), 2.51 (3H, s, CH3), 2.17 (3H, s, CH3), 2.35 (2H, m, PCy2), 1.76-1.06 (20H, m, Cy). 31P{1H}NMR (162 MHz, CDCl3) δ 67.15, 65.54. MS-ESI+ [m/z]: 741.2 (M+-Cl).

General Procedure for the Coupling Reaction of Chlorophenylmethanol. In a Schlenk tube, a mixture of the prescribed amount of catalyst, aryl halides (1.0 mmol), aryl boronic acids (1.5 mmol) and the selected base (2.0 mmol) in water was evacuated and charged with nitrogen. The reaction mixture was heated at 100 °C for 24 h. After being cooled, the mixture was extracted with CH2Cl2 and evaporated, the resulting residue was purified by flash chromatography on silica gel using mixture of CH2Cl2/ethyl acetate (5/1) as eluent. The products 4b, 4d and 4j were determined by 1H and C13 NMR. Other products were characterized by comparison of data with those in the literature.17,19

4′-Phenyl-biphenyl-2-methanol (4b): Yield 75%. 1H NMR (400 MHz, CDCl3) δ 8.22-8.29 (m, 3H, ArH), 7.76 (m, 2H, ArH), 7.40-7.49 (m, 3H, ArH), 7.40-7.49 (m, 4H, ArH), 7.29 (d, 1H, ArH), 4.60 (s, 2H, CH2), 1.68 (s, 1H, OH). 13C NMR (100 MHz, CDCl3) δ 141.0, 140.7, 140.1, 139.6, 138.1, 130.1, 129.7, 129.1, 128.9, 128.6, 128.4, 127.8, 127.5, 127.1, 63.3. MS-ESI+ [m/z]: 260.1 (M+). Anal. Calc. for C19H16O: C, 87.66; H, 6.19. Found: C, 87.85; H, 6.07.

4′-Ethyl-biphenyl-2-methanol (4d): Yield 87%. 1H NMR (400 MHz, CDCl3) δ 7.52-7.55 (m, 1H, ArH), 7.23-7.39 (m, 7H, ArH), 4.61 (s, 2H, CH2), 2.70 (q, 2H, CH2), 1.71 (s, 1H, OH), 1.28 (t, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 143.3, 141.3, 138.1, 137.9, 130.2, 129.1, 128.9, 128.4, 127.8, 127.6, 62.9, 29.7, 15.6. MS-ESI+ [m/z]: 212.1 (M+). Anal. Calc. for C15H16O: C, 84.87; H, 7.60. Found: C, 84.99; H, 7.46.

3′-Nitro-biphenyl-2-methanol (4j): Yield 74%. 1H NMR (400 MHz, CDCl3) δ 7.63-7.66 (m, 2H, ArH), 7.55-7.59 (m, 1H, ArH), 7.32-7.48 (m, 5H, ArH), 4.66 (s, 2H, CH2), 1.72 (s, 1H, OH). 13C NMR (100 MHz, CDCl3) δ 148.1, 142.3, 139.1, 137.8, 135.4, 130.0, 129.2, 129.1, 128.8, 128.2, 124.1, 122.3, 63.0. MS-ESI+ [m/z]: 229.1 (M+). Anal. Calc. for C13H11NO3: C, 68.11; H, 4.84; N, 6.11. Found: C, 68.34; H, 4.72; N, 6.27

References

  1. Tojo, G.; Fernandez, M. Oxidation of Alcohols to Aldehydes and Ketones; Springer; New York, 2006.
  2. Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Ripin, D. H. B. Chem. Rev. 2006, 106, 2943. https://doi.org/10.1021/cr040679f
  3. (a) Guillena, G.; Ramon, D. J.; Yus, M. Angew. Chem. Int. Ed. 2007, 46, 2358. https://doi.org/10.1002/anie.200603794
  4. (b) Guillena, G.; Ramon, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611. https://doi.org/10.1021/cr9002159
  5. (a) Park, Y. H.; Ahn, H. R.; Canturk, B.; Jeon, S.; Lee, S.; Kang, H.; Molander, G. A.; Ham, J. Org. Lett. 2008, 10, 1215. https://doi.org/10.1021/ol800083j
  6. (b) Ronson, T. K.; Carruthers, C.; Fisher, J.; Brotin, T.; Harding, L. P.; Rizkallah, P. J.; Hardie, M. J. Inorg. Chem. 2010, 49, 675. https://doi.org/10.1021/ic901972h
  7. (c) Li, Y. F.; Liu, Y.; Zhou, M. Dalton Trans. 2012, 41, 2582. https://doi.org/10.1039/c1dt11716e
  8. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. https://doi.org/10.1021/cr00039a007
  9. Dupont, J.; Pfeffer, M. Palladacycles; Wiley-VCH: Weinheim, 2008.
  10. (a) Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 6338.
  11. (b) Li, C. J.; Chan, T. H. Organic Reaction in Aqueous Media; Wiley & Sons: New York, 1998.
  12. (a) Botella, L.; Najera, C. Angew. Chem. Int. Ed. 2002, 41, 179. https://doi.org/10.1002/1521-3773(20020104)41:1<179::AID-ANIE179>3.0.CO;2-O
  13. (b) Botella, L.; Najera, C. J. Organomet. Chem. 2002, 663, 46. https://doi.org/10.1016/S0022-328X(02)01727-8
  14. (c) Huang, R. C.; Shaughnessy, K. H. Organometallics 2006, 25, 4105. https://doi.org/10.1021/om050940y
  15. (d) Shaughnessy, K. H. Chem. Rev. 2009, 109, 643. https://doi.org/10.1021/cr800403r
  16. (e) Susanto, W.; Chu, C. Y.; Ang, W. J.; Chou, T. C.; Lo, L. C.; Lam, Y. Green Chem. 2012, 14, 77. https://doi.org/10.1039/c1gc16108c
  17. (a) Shahnaz, N.; Banik, B.; Das, P. Tetrahedron Lett. 2013, 54, 2886. https://doi.org/10.1016/j.tetlet.2013.03.115
  18. (b) Lei, X. Y.; Obregon, K. A.; Alla, J. Appl. Organomet. Chem. 2013, 27, 419. https://doi.org/10.1002/aoc.3000
  19. Li, H. M.; Xu, C.; Hao, X. Q.; Li, Z.; Wang, Z. Q.; Fu, W. J.; Song, M. P. Inorg. Chim. Acta 2013, 404, 236. https://doi.org/10.1016/j.ica.2013.04.014
  20. Broadhead, D. G.; Osgerby, J. M.; Pauson, P. L. J. Chem. Soc. 1958, 650. https://doi.org/10.1039/jr9580000650
  21. (a) Bedford, R. B.; Betham, M.; Blake, M. E.; Frost, R. M.; Horton, P. N.; Hursthouse, M. B.; Lopez-Nicolas, R. M. Dalton Trans. 2005, 2774.
  22. (b) Bedford, R. B.; Betham, M.; Coles, S. J. P.; Horton, N.; Lopez-Saez, M. J. Polyhedron 2006, 25, 1003. https://doi.org/10.1016/j.poly.2005.11.014
  23. (c) Xu, C.; Wang, Z. Q.; Fu, W. J.; Lou, X. H.; Li, Y. F.; Cen, F. F.; Ma, H. J.; Ji, B. M. Organometallics 2009, 28, 1909. https://doi.org/10.1021/om801149r
  24. (a) Xu, C.; Wang, Z. Q.; Zhang, Y. P.; Dong, X. M.; Hao, X. Q.; Fu, W. J.; Ji, B. M.; Song, M. P. Eur. J. Inorg. Chem. 2011, 4878.
  25. (b) Xu, C.; Duan, L. M.; Li, Z.; Lou, X. H.; Wang, Z. Q.; Fan, Y. T. Bull. Korean Chem. Soc. 2012, 33, 1383. https://doi.org/10.5012/bkcs.2012.33.4.1383
  26. (a) Brammer, L.; Bruton, E. A.; Sherwood, P. Cryst. Growth Des. 2001, 1, 277. https://doi.org/10.1021/cg015522k
  27. (b) Nangia, A. CrystEngComm 2002, 4, 93. https://doi.org/10.1039/b201206e
  28. Braga, D.; Grepioni, F.; Tedesco, E. Organometallics 1997, 16, 1846. https://doi.org/10.1021/om9608364
  29. (a) Li, C. J. Angew. Chem. Int. Ed. 2003, 42, 4856. https://doi.org/10.1002/anie.200301672
  30. (b) Arvela, R. K.; Leadbeater, N. E. Org. Lett. 2005, 7, 2101. https://doi.org/10.1021/ol0503384
  31. (a) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550. https://doi.org/10.1021/ja992130h
  32. (b) Hwang, S. J.; Kim, H. J.; Chang, S. Org. Lett. 2009, 11, 4588. https://doi.org/10.1021/ol901854f
  33. Lopez, C.; Bosque, R.; Solans, X.; Font-Bardia, M. J. Organomet. Chem. 1997, 539, 99. https://doi.org/10.1016/S0022-328X(97)00030-2
  34. (a) Berridge, M. S.; Sayre, L. M.; Krora, P. K.; Terris, A. H.; Riachi, N. J.; Harik, S. I. J. Med. Chem. 1993, 36, 1284. https://doi.org/10.1021/jm00061a021
  35. (b) Clive, D. L.; Kang, S. J. Org. Chem. 2001, 66, 6083. https://doi.org/10.1021/jo010371d
  36. (c) Desmarets, C.; Omar-Amrani, R.; Walcarius, A.; Lambert, J.; Champagne, B.; Fort, Y.; Schneider, R. Tetrahedron 2008, 64, 372. https://doi.org/10.1016/j.tet.2007.10.091
  37. (d) Kwon, Y.; Cho, H.; Kim, S. Org. Lett. 2013, 15, 920. https://doi.org/10.1021/ol400073s

Cited by

  1. -Alkylation of Amines with Alcohols vol.36, pp.10, 2015, https://doi.org/10.1002/bkcs.10484
  2. Water-soluble palladacycles containing hydroxymethyl groups: synthesis, crystal structures and use as catalysts for amination and Suzuki coupling of reactions vol.41, pp.4, 2016, https://doi.org/10.1007/s11243-016-0036-5
  3. Palladium-Catalyzed Suzuki-Miyaura Coupling Reactions of Boronic Acid Derivatives with Aryl Chlorides vol.5, pp.10, 2016, https://doi.org/10.1002/ajoc.201600319
  4. ChemInform Abstract: Synthesis of Substituted Biarylmethanol via Ferrocenyloxime Palladacycles Catalyzed Suzuki Reaction of Chlorophenylmethanol in Water. vol.46, pp.5, 2015, https://doi.org/10.1002/chin.201505108
  5. Molecular Flexibility and Bend in Semi‐Rigid Liquid Crystals: Implications for the Heliconical Nematic Ground State vol.25, pp.63, 2014, https://doi.org/10.1002/chem.201903677