Experimental
Materials and Measurement. The chloride-bridged palladacyclic dimer 1 was prepared according to published procedures.18 All other chemicals were used as purchased. Elemental analyses were determined with a Thermo Flash EA 1112 elemental analyzer. IR spectra were collected on a Bruker VECTOR22 spectrophotometer using KBr pellets. NMR spectra were recorded on a Bruker DPX-400 spectrometer in CDCl3 with TMS as an internal standard. Mass spectra were measured on a LC-MSD-Trap-XCT instrument. Crystallographic data were collected on a Bruker SMART APEX-II CCD diffractometer. CCDC reference number 625798 for 2. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc. cam.ac.uk/data_request/cif.
[PdCl{[(η5-C5H5)]Fe[(η5-C5H3)-C(CH3)=NOH](DCPAB)] (2): A solution of 1 (0.1 mmol) and DCPAB (0.20 mmol) in CH2Cl2 (10 mL) was stirred at room temperature for 30 min. The product was separated by passing through a short silicagel column with CH2Cl2/ethyl acetate (1:1, v/v) as eluent. The second band was collected and afforded complex 2. Red solid, 89% yield. Found: C, 58.92; H, 6.10; N 3.92. Calc. for C38H48ClFeN2OPPd: C, 58.70; H, 6.22; N, 3.73%. IR (KBr, cm−1): 2925, 2851, 1599 (C=N), 1447, 1315, 1264, 1106, 1052, 1002, 808, 752.1H NMR (400 MHz, CDCl3) δ 9.89 (1H, brs, OH), 7.98 (1H, m, ArH), 7.21-7.37 (5H, m, ArH), 7.04-7.09 (2H, m, ArH), 4.24 (1H, s, C5H3), 4.07-4.14 (6H, m, C5H5+C5H3), 3.92 (1H, s, C5H3), 2.56 (3H, s, CH3), 2.51 (3H, s, CH3), 2.17 (3H, s, CH3), 2.35 (2H, m, PCy2), 1.76-1.06 (20H, m, Cy). 31P{1H}NMR (162 MHz, CDCl3) δ 67.15, 65.54. MS-ESI+ [m/z]: 741.2 (M+-Cl).
General Procedure for the Coupling Reaction of Chlorophenylmethanol. In a Schlenk tube, a mixture of the prescribed amount of catalyst, aryl halides (1.0 mmol), aryl boronic acids (1.5 mmol) and the selected base (2.0 mmol) in water was evacuated and charged with nitrogen. The reaction mixture was heated at 100 °C for 24 h. After being cooled, the mixture was extracted with CH2Cl2 and evaporated, the resulting residue was purified by flash chromatography on silica gel using mixture of CH2Cl2/ethyl acetate (5/1) as eluent. The products 4b, 4d and 4j were determined by 1H and C13 NMR. Other products were characterized by comparison of data with those in the literature.17,19
4′-Phenyl-biphenyl-2-methanol (4b): Yield 75%. 1H NMR (400 MHz, CDCl3) δ 8.22-8.29 (m, 3H, ArH), 7.76 (m, 2H, ArH), 7.40-7.49 (m, 3H, ArH), 7.40-7.49 (m, 4H, ArH), 7.29 (d, 1H, ArH), 4.60 (s, 2H, CH2), 1.68 (s, 1H, OH). 13C NMR (100 MHz, CDCl3) δ 141.0, 140.7, 140.1, 139.6, 138.1, 130.1, 129.7, 129.1, 128.9, 128.6, 128.4, 127.8, 127.5, 127.1, 63.3. MS-ESI+ [m/z]: 260.1 (M+). Anal. Calc. for C19H16O: C, 87.66; H, 6.19. Found: C, 87.85; H, 6.07.
4′-Ethyl-biphenyl-2-methanol (4d): Yield 87%. 1H NMR (400 MHz, CDCl3) δ 7.52-7.55 (m, 1H, ArH), 7.23-7.39 (m, 7H, ArH), 4.61 (s, 2H, CH2), 2.70 (q, 2H, CH2), 1.71 (s, 1H, OH), 1.28 (t, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 143.3, 141.3, 138.1, 137.9, 130.2, 129.1, 128.9, 128.4, 127.8, 127.6, 62.9, 29.7, 15.6. MS-ESI+ [m/z]: 212.1 (M+). Anal. Calc. for C15H16O: C, 84.87; H, 7.60. Found: C, 84.99; H, 7.46.
3′-Nitro-biphenyl-2-methanol (4j): Yield 74%. 1H NMR (400 MHz, CDCl3) δ 7.63-7.66 (m, 2H, ArH), 7.55-7.59 (m, 1H, ArH), 7.32-7.48 (m, 5H, ArH), 4.66 (s, 2H, CH2), 1.72 (s, 1H, OH). 13C NMR (100 MHz, CDCl3) δ 148.1, 142.3, 139.1, 137.8, 135.4, 130.0, 129.2, 129.1, 128.8, 128.2, 124.1, 122.3, 63.0. MS-ESI+ [m/z]: 229.1 (M+). Anal. Calc. for C13H11NO3: C, 68.11; H, 4.84; N, 6.11. Found: C, 68.34; H, 4.72; N, 6.27
References
- Tojo, G.; Fernandez, M. Oxidation of Alcohols to Aldehydes and Ketones; Springer; New York, 2006.
- Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Ripin, D. H. B. Chem. Rev. 2006, 106, 2943. https://doi.org/10.1021/cr040679f
- (a) Guillena, G.; Ramon, D. J.; Yus, M. Angew. Chem. Int. Ed. 2007, 46, 2358. https://doi.org/10.1002/anie.200603794
- (b) Guillena, G.; Ramon, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611. https://doi.org/10.1021/cr9002159
- (a) Park, Y. H.; Ahn, H. R.; Canturk, B.; Jeon, S.; Lee, S.; Kang, H.; Molander, G. A.; Ham, J. Org. Lett. 2008, 10, 1215. https://doi.org/10.1021/ol800083j
- (b) Ronson, T. K.; Carruthers, C.; Fisher, J.; Brotin, T.; Harding, L. P.; Rizkallah, P. J.; Hardie, M. J. Inorg. Chem. 2010, 49, 675. https://doi.org/10.1021/ic901972h
- (c) Li, Y. F.; Liu, Y.; Zhou, M. Dalton Trans. 2012, 41, 2582. https://doi.org/10.1039/c1dt11716e
- Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. https://doi.org/10.1021/cr00039a007
- Dupont, J.; Pfeffer, M. Palladacycles; Wiley-VCH: Weinheim, 2008.
- (a) Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 6338.
- (b) Li, C. J.; Chan, T. H. Organic Reaction in Aqueous Media; Wiley & Sons: New York, 1998.
- (a) Botella, L.; Najera, C. Angew. Chem. Int. Ed. 2002, 41, 179. https://doi.org/10.1002/1521-3773(20020104)41:1<179::AID-ANIE179>3.0.CO;2-O
- (b) Botella, L.; Najera, C. J. Organomet. Chem. 2002, 663, 46. https://doi.org/10.1016/S0022-328X(02)01727-8
- (c) Huang, R. C.; Shaughnessy, K. H. Organometallics 2006, 25, 4105. https://doi.org/10.1021/om050940y
- (d) Shaughnessy, K. H. Chem. Rev. 2009, 109, 643. https://doi.org/10.1021/cr800403r
- (e) Susanto, W.; Chu, C. Y.; Ang, W. J.; Chou, T. C.; Lo, L. C.; Lam, Y. Green Chem. 2012, 14, 77. https://doi.org/10.1039/c1gc16108c
- (a) Shahnaz, N.; Banik, B.; Das, P. Tetrahedron Lett. 2013, 54, 2886. https://doi.org/10.1016/j.tetlet.2013.03.115
- (b) Lei, X. Y.; Obregon, K. A.; Alla, J. Appl. Organomet. Chem. 2013, 27, 419. https://doi.org/10.1002/aoc.3000
- Li, H. M.; Xu, C.; Hao, X. Q.; Li, Z.; Wang, Z. Q.; Fu, W. J.; Song, M. P. Inorg. Chim. Acta 2013, 404, 236. https://doi.org/10.1016/j.ica.2013.04.014
- Broadhead, D. G.; Osgerby, J. M.; Pauson, P. L. J. Chem. Soc. 1958, 650. https://doi.org/10.1039/jr9580000650
- (a) Bedford, R. B.; Betham, M.; Blake, M. E.; Frost, R. M.; Horton, P. N.; Hursthouse, M. B.; Lopez-Nicolas, R. M. Dalton Trans. 2005, 2774.
- (b) Bedford, R. B.; Betham, M.; Coles, S. J. P.; Horton, N.; Lopez-Saez, M. J. Polyhedron 2006, 25, 1003. https://doi.org/10.1016/j.poly.2005.11.014
- (c) Xu, C.; Wang, Z. Q.; Fu, W. J.; Lou, X. H.; Li, Y. F.; Cen, F. F.; Ma, H. J.; Ji, B. M. Organometallics 2009, 28, 1909. https://doi.org/10.1021/om801149r
- (a) Xu, C.; Wang, Z. Q.; Zhang, Y. P.; Dong, X. M.; Hao, X. Q.; Fu, W. J.; Ji, B. M.; Song, M. P. Eur. J. Inorg. Chem. 2011, 4878.
- (b) Xu, C.; Duan, L. M.; Li, Z.; Lou, X. H.; Wang, Z. Q.; Fan, Y. T. Bull. Korean Chem. Soc. 2012, 33, 1383. https://doi.org/10.5012/bkcs.2012.33.4.1383
- (a) Brammer, L.; Bruton, E. A.; Sherwood, P. Cryst. Growth Des. 2001, 1, 277. https://doi.org/10.1021/cg015522k
- (b) Nangia, A. CrystEngComm 2002, 4, 93. https://doi.org/10.1039/b201206e
- Braga, D.; Grepioni, F.; Tedesco, E. Organometallics 1997, 16, 1846. https://doi.org/10.1021/om9608364
- (a) Li, C. J. Angew. Chem. Int. Ed. 2003, 42, 4856. https://doi.org/10.1002/anie.200301672
- (b) Arvela, R. K.; Leadbeater, N. E. Org. Lett. 2005, 7, 2101. https://doi.org/10.1021/ol0503384
- (a) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550. https://doi.org/10.1021/ja992130h
- (b) Hwang, S. J.; Kim, H. J.; Chang, S. Org. Lett. 2009, 11, 4588. https://doi.org/10.1021/ol901854f
- Lopez, C.; Bosque, R.; Solans, X.; Font-Bardia, M. J. Organomet. Chem. 1997, 539, 99. https://doi.org/10.1016/S0022-328X(97)00030-2
- (a) Berridge, M. S.; Sayre, L. M.; Krora, P. K.; Terris, A. H.; Riachi, N. J.; Harik, S. I. J. Med. Chem. 1993, 36, 1284. https://doi.org/10.1021/jm00061a021
- (b) Clive, D. L.; Kang, S. J. Org. Chem. 2001, 66, 6083. https://doi.org/10.1021/jo010371d
- (c) Desmarets, C.; Omar-Amrani, R.; Walcarius, A.; Lambert, J.; Champagne, B.; Fort, Y.; Schneider, R. Tetrahedron 2008, 64, 372. https://doi.org/10.1016/j.tet.2007.10.091
- (d) Kwon, Y.; Cho, H.; Kim, S. Org. Lett. 2013, 15, 920. https://doi.org/10.1021/ol400073s
Cited by
- -Alkylation of Amines with Alcohols vol.36, pp.10, 2015, https://doi.org/10.1002/bkcs.10484
- Water-soluble palladacycles containing hydroxymethyl groups: synthesis, crystal structures and use as catalysts for amination and Suzuki coupling of reactions vol.41, pp.4, 2016, https://doi.org/10.1007/s11243-016-0036-5
- Palladium-Catalyzed Suzuki-Miyaura Coupling Reactions of Boronic Acid Derivatives with Aryl Chlorides vol.5, pp.10, 2016, https://doi.org/10.1002/ajoc.201600319
- ChemInform Abstract: Synthesis of Substituted Biarylmethanol via Ferrocenyloxime Palladacycles Catalyzed Suzuki Reaction of Chlorophenylmethanol in Water. vol.46, pp.5, 2015, https://doi.org/10.1002/chin.201505108
- Molecular Flexibility and Bend in Semi‐Rigid Liquid Crystals: Implications for the Heliconical Nematic Ground State vol.25, pp.63, 2014, https://doi.org/10.1002/chem.201903677