References
- O. P. Ahuja and M. Nunokawa, Neighborhoods of analytic functions defined by Ruscheweyh derivatives, Math. Japon., 51(2003), 487-492.
- F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 2004(25-28), 1429-1436.
- O. Altintas, Neighborhoods of certain p-valently analytic functions with negative co-efficients, Appl. Math. Comput., 187(2007), 47-53. https://doi.org/10.1016/j.amc.2006.08.101
- O. Altntas and S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Int. J. Math. Math. Sci., 19(1996), 797-800. https://doi.org/10.1155/S016117129600110X
- O. Altntas, O. Ozkan and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Letters, 13(3)(2000), 63-67.
- O. Altntas, O. Ozkan and H. M. Srivastava, Majorization by starlike functions of complex order, Complex Variables Theory Appl., 46(2001), 207-218. https://doi.org/10.1080/17476930108815409
- O. Altntas, O. Ozkan and H. M. Srivastava, Neighborhoods of a certain family of mul-tivalent functions with negative coefficients, Comput. Math. Appl., 47(2004), 1667-1672. https://doi.org/10.1016/j.camwa.2004.06.014
- S. Bulut, On a class of analytic and multivalent functions with negative co-efficients defined by Al-Oboudi differential operator, Stud. Univ. Babes-Bolyai Math., 55(4)(2010), 115-130.
- R. M. El-Ashwah and M. K. Aouf, Inclusion and neighborhood properties of some analytic p-valent functions, Gen. Math., 18(2)(2010), 173-184.
- A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8(1957), 598-601. https://doi.org/10.1090/S0002-9939-1957-0086879-9
- B. S. Keerthi, A. Gangadharan and H. M. Srivastava, Neighborhoods of certain sub-classes of analytic functions of complex order with negative coefficients, Math. Com-put. Modelling, 47(3-4)(2008) 271-277. https://doi.org/10.1016/j.mcm.2007.04.004
- G. Murugusundaramoorthy and H. M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math., 5(2)(2004), 1-8(Art. 24).
- M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math., 25(1985), 1-12.
- H. Orhan, M. Kamali, Starlike, convex and close-to convex functions of complex order, Appl. Math., Comput. 135(2003) 251-262. https://doi.org/10.1016/S0096-3003(01)00326-5
- R. K. Raina and H. M. Srivastava, Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequal. Pure Appl. Math., 7(1)(2006), 1-6(Art. 5).
- S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(1981), 521-527. https://doi.org/10.1090/S0002-9939-1981-0601721-6
- G. S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., vol 1013, Springer Berlin 1983, pp 362-372.
- T. N. Shanmugam and M. P. Jeyaraman, Neighborhoods of a class of analytic func-tions with negative coefficients, J. Orissa Math. Soc., 25(1-2)(2006), 83-89.
- H. Silverman, Neighborhoods of classes of analytic functions, Far East J. Math. Sci., 3(1995), 165-169.
- P. Wiatrowski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. Lodzkiego, Mat.-Przyr., 39(2)(1970), 75-85.