DOI QR코드

DOI QR Code

Silwet L-77 이 포함된 Polydimethylsiloxane(PDMS) 마이크로 채널의 유동 길이 모델링

Modeling of Capillary Filling Length in Silwet L-77 Added Poly(Dimethylsiloxane) (PDMS) Microchannels

  • 이봄이 (전남대학교 기계공학부) ;
  • 이봉기 (전남대학교 기계공학부)
  • Lee, Bom-Yee (School of Mechanical Engineering, Chonnam Nat'l Univ.) ;
  • Lee, Bong-Kee (School of Mechanical Engineering, Chonnam Nat'l Univ.)
  • 투고 : 2014.02.21
  • 심사 : 2014.06.11
  • 발행 : 2014.08.01

초록

본 연구에서는 계면활성제를 첨가한 사각 PDMS(polydimethylsiloxane) 마이크로 채널에서의 모세관 흐름에 의한 충전 길이를 예측하기 위한 모델들을 제안하였다. 일반적으로 PDMS 의 소수성 특성 때문에 모세관 힘만을 이용한 PDMS 마이크로 채널에서의 물의 이동에는 어려움이 따르게 된다. 따라서 본 연구에서는 계면활성제를 첨가하여 친수성을 가지는 PDMS 표면을 제작하고, 이 표면에서의 물의 접촉각 변화 측정 및 단순 모델을 수립하였다. 또한 친수성 PDMS 마이크로 채널에서의 모세관 힘에 따른 충전 길이를 예측하기 위해서 Washburn 방정식을 바탕으로 한 단순 모델을 수립하였다. 그 결과 유체의 충전 길이는 접촉각의 초기변화속도의 영향을 받는 것을 확인할 수 있었다. 이를 바탕으로 대표적인 세가지 경우에 대한 모델을 제안하였으며, 이들은 MIMIC(MIcroMolding In Capillaries)과 같은 마이크로 유체 기반의 생산공정의 설계와 개발에 유용하게 적용될 수 있을 것이다.

In the present study, simple models were proposed to predict the capillary-driven flow length in a surfactant-added poly(dimethylsiloxane) (PDMS) rectangular microchannel. Owing to the hydrophobic nature of PDMS, it is difficult to transport water in a conventional PDMS microchannel by means of the capillary force alone. To overcome this problem, microchannels with a hydrophilic surface were fabricated using surfactant-added PDMS. By measuring the contact angle change on the surfactant-added PDMS surface, the behavior was investigated to establish a simple model. In order to predict the filling length induced by the capillary force, the Washburn equation was modified in the present study. From the investigation, it was found that the initial rate-of-change of the contact angle affected the filling length. Simple models were developed for three representative cases, and these can be useful tools in designing microfluidic manufacturing techniques including MIcroMolding In Capillaries (MIMIC).

키워드

참고문헌

  1. Ichikawa, N., Hosokawa, K. and Maeda, R., 2004, "Interface Motion of Capillary-Driven Flow in Rectangular Microchannel," J. Colloid Interface Sci., Vol. 280, No.1, pp. 155-164. https://doi.org/10.1016/j.jcis.2004.07.017
  2. Yang, D., Krasowska, M., Priest, C., Popescu, M. N. and Ralston, J., 2011, "Dynamics of Capillary-Driven Flow in Open Microchannels," J. Phys. Chem. C., Vol. 115, No. 38, pp. 18761-18769. https://doi.org/10.1021/jp2065826
  3. Stemme, E. and Stemme, G., 1993, "A Valveless Diffuser/Nozzle-based Fluid Pump," Sens. Actuat. A, Vol. 39, No. 2, pp. 159-167. https://doi.org/10.1016/0924-4247(93)80213-Z
  4. Olsson, A., Larsson O., Holm J., Lundbladh, L., Ohman O. and Stemme G., 1998, "Valve-less Diffuser Micropumps Fabricated using Thermoplastic Replication," Sens. Actuat. A, Vol. 64, No. 1, pp. 63-68. https://doi.org/10.1016/S0924-4247(98)80059-9
  5. Berg, J. M., Anderson, R., Anaya, M., Lahlouh, B., Holtz, M. and Dallas, T., 2003, "A Two-stage Discrete Peristalic Micropump," Sens. Actuat. A, Vol. 104, No. 1, pp. 6-10. https://doi.org/10.1016/S0924-4247(02)00434-X
  6. Kirby, B. J., 2010, Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices, Cambridge University Press, New York, pp. 131-152.
  7. Makamba, H., Kim, J. H., Lim, K., Park, N. and Hahn, J. H., 2003, "Surface Modification of Poly (dimethylsiloxane) Microchannels," Electrophoresis, Vol. 24, No. 21, pp. 3607-3619. https://doi.org/10.1002/elps.200305627
  8. Anderson, J. R., Chiu, D. T., Jackman, R. J., Cherniavskaya, O., McDonald, J. C., Wu, H., Whitesides, S. H. and Whitesides, G. M., 2000, "Fabrication of Topologically Complex Three-Dimensional Microfluidic System in PDMS by Rapid Prototyping," Anal. Chem., Vol. 72, No. 14, pp. 3158-3164. https://doi.org/10.1021/ac9912294
  9. Lee, C.-j., Lee, S.-k., Park, G.-h. and Kim, B.-m., 2008, "The Evaluation of Surface and Adhesive Bonding Properties for Cold Rolled Steel Sheet for Automotive Treated by Ar/O2 Atmospheric Pressure Plasma," Trans. Korean Soc. Mech. Eng. A, Vol. 32, No. 4, pp. 354-361. https://doi.org/10.3795/KSME-A.2008.32.4.354
  10. Kim, Y.C., Kim, S.-H., Kim, D., Park, S.-J. and Park, J.-K., 2010, "Plasma Extraction in a Capillary- Driven Microfluidic Device Using Surfactant-Added Poly(dimethylsiloxane)," Sens. Actuators B-Chem., Vol. 145, No. 2, pp. 861-868. https://doi.org/10.1016/j.snb.2010.01.017
  11. Washburn, E.W., 1921, "The Dynamics of Capillary Flow," Phys. Rev., Vol. 17, No. 3, pp. 273-283. https://doi.org/10.1103/PhysRev.17.273
  12. Kim, H. W., Park, S. J., Lee, B.-K. and Kim, D. S., 2013, "Versatile Graphene Nanocomposite Microheater Patterning for Various Thermoplastic Substrates Based on Capillary Filling and Transfer Molding," Appl. Phys. Lett., Vol. 102, No. 10, pp. 101-907.
  13. Kim, E., Xia, Y. and Whitesides, G. M., "Polymer Microstructures Formed by Moulding in Capillary," Nature, Vol. 376, No. 6541, pp. 581-584.