DOI QR코드

DOI QR Code

Precise Static Contact Angle Measurements Using Pythagolas Rule

피타고라스 원리를 이용한 정적 접촉각 정밀 각도 측정방법

  • Choi, Jin-Yeong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kwon, Dong-Jun (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Wang, Zuo-Jia (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 최진영 (경상대학교 나노.신소재융합공학과, 공학연구원) ;
  • 권동준 (경상대학교 나노.신소재융합공학과, 공학연구원) ;
  • 왕작가 (경상대학교 나노.신소재융합공학과, 공학연구원) ;
  • 신평수 (경상대학교 나노.신소재융합공학과, 공학연구원) ;
  • 박종만 (경상대학교 나노.신소재융합공학과, 공학연구원)
  • Received : 2014.03.11
  • Accepted : 2014.05.12
  • Published : 2014.06.30

Abstract

Pythagolas rule was used for investigation of static contact angle in particular figures. Static contact angle measurement was important to evaluate the wettability between solid and liquid. Optimum measurement method and standardization of calculation for static contact angle were investigated for practical application. Optimum diameter of droplet for static contact angle measurement was confirmed as 1 mm. Contact angle measurement using Pythagolas rule was also used to calculate advancing, receding angle and wettability of different surface condition. At last, it was concluded that the Pythagolas rule method was more accurate than general lineation method for static contact angle measurement.

피타고라스 원리를 이용하면 특정 도형이 보유하고 있는 각도에 대한 계산이 용이해진다. 정적 접촉각 평가방법을 이용할 경우 용액과 고체 물체간의 접촉각의 수치 계산이 가장 중요한 부분이다. 용액과 고체 표면이 이루는 각도 측정을 용이하게 하기 위해서 접촉각을 계산하는 방법을 규격화하는 방법과 접촉각 평가에 따른 실험적 변수 최소화 조건을 마련하였다. 접촉각 실험을 위한 용액의 직경에 따른 접촉각의 각도 계산 오차를 분석하고, 최적의 물방울 직경은 1 mm임을 확인하였다. 피타고라스 원리를 이용한 접촉각 측정방법은 전진각과 후진각을 확인하는데 사용할 수 있으며, 소수성 및 친수성 표면을 분석하는데 적용이 가능하였다. 궁극적으로 일반적인 접선 긋기를 통한 각도 계산 결과보다 피타고라스 원리를 이용하여 접촉각 각도 계산을 실시할 경우 비교적 정확한 접촉각 계산 결과를 확인할 수 있었다.

Keywords

References

  1. G. Bolzon and M. Talassi, International Journal of Mechanical Sciences, 77, 130 (2013). https://doi.org/10.1016/j.ijmecsci.2013.09.009
  2. J. M. Park, T. Q. Son, J. G. Jung, S. J. Kim, and B. S. Hwang, Journal of Adhesion and Interface, 7, 2 (2006).
  3. D. Y. Mok, H. D. Shin, D. H. Kim, G. N. Kim, H. S. Moon, and I. S. Kim, Journal of Adhesion and Interface, 14, 2 (2013).
  4. S. Wang, S. Dong, R. Zhang, H. Shao, and Y. Liu, Process Biochemistry, 49, 237 (2014). https://doi.org/10.1016/j.procbio.2013.10.018
  5. C. Spadaro, C. Dispenza, and C. Sunseri, International Journal of Adhesion & Adhesives, 28, 211 (2008). https://doi.org/10.1016/j.ijadhadh.2007.04.001
  6. J. H. Jang, Z. J. Wang, G. K. Joel, G. Y. Gu, and J. M Park, Journal of Adhesion and Interface, 10, 2 (2009).
  7. J. M. Park, D. S. Kim, and S. R. Kim, Journal of Adhesion and Interface, 3, 2 (2002).
  8. H. S. Joo, D. H. Lim, Y. J. Park, and H. J. Kim, Journal of Adhesion and Interface, 6, 1 (2005).
  9. Y. Lu, N. Tang, R. Lian, J. Qi, and W. Wu, International Journal of Pharmaceutics, 465, 25 (2014). https://doi.org/10.1016/j.ijpharm.2014.02.004
  10. C. W. Lee, H. D. Cho, D. S. Kim, and W. B. Hwang, Applied Surface Science, 288, 619 (2014). https://doi.org/10.1016/j.apsusc.2013.10.084
  11. Z. Zhou, J. Shi, H. H. Chen, S. R. Schafer, and C. L. Chen, International Journal of Heat and Mass Tansfer, 71, 593 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.057
  12. Y. Yamamoto, K. Tokieda, T. Wakimoto, T. Ito, and K. Katoh, International Journal of Multiphase Flow, 59, 106 (2014). https://doi.org/10.1016/j.ijmultiphaseflow.2013.10.018
  13. L. M. M. Carmen, J. M. R. C. Francisco, A. C. V Miguel, and A. R. V. Miguel, Colloids and Surfaces A : Physicochemical and Engineering Aspects, 404, 63 (2012). https://doi.org/10.1016/j.colsurfa.2012.04.012
  14. D. Janssen, R. D. Palma, S. Verlaak, P. Heremans, and W. Dehaen, Thin Solid Films, 515, 1433 (2006). https://doi.org/10.1016/j.tsf.2006.04.006
  15. O. A. Arturo, L. Facal, and I. Ion, Chemical Engineering Science, 58, 2835 (2003). https://doi.org/10.1016/S0009-2509(03)00139-8
  16. X. Wang, Z. Yang, X. Shu, and J. Feng, Powder Technology, 235, 1053 (2013).
  17. D. G. yu, C. W. Choi, and M. H. Kim, Experimental Thermal and Fluid Science, 39, 60 (2012). https://doi.org/10.1016/j.expthermflusci.2012.01.009
  18. J. Xue, P. Shi, L. Zhu, J. Ding, Q. Chen, and Q. Wang, Applied Surface Science, 296, 133 (2014). https://doi.org/10.1016/j.apsusc.2014.01.060
  19. X. L. Meng, L. S. Wan, and Z. K. Xu, Colloid and Surfaces A : Physicochemical and Engineering Aspects, 389, 213 (2011). https://doi.org/10.1016/j.colsurfa.2011.08.024
  20. M. E. Diaz, J. Fuentes, R. L. Cerro, and M. D. Savage, Journal of Colloid and Interface Science, 343, 574 (2010). https://doi.org/10.1016/j.jcis.2009.11.055
  21. E. Chibowski, Advaceds in Colloid and Interface Science, 133, 51 (2007). https://doi.org/10.1016/j.cis.2007.03.002
  22. S. J. pogorzelski, Z. Berezowski, and P. Rochowski, Applied Surface Science, 258, 3652 (2012). https://doi.org/10.1016/j.apsusc.2011.11.132