DOI QR코드

DOI QR Code

Studies on Adhesion Properties between Zinc-Coated Steel Cord and Adhesion Promoter-Containing Rubber Compound

아연 코팅된 스틸코드와 접착증진제가 적용된 고무 Compound와의 접착특성 연구

  • Received : 2014.03.08
  • Accepted : 2014.04.25
  • Published : 2014.06.30

Abstract

In this study, properties of adhesion between adhesion promoter-containing rubber compound and zinc coated steel cord was investigated. Cobalt salt, resorcinol formaldehyde resin (RF resin) and hexamethoxymethylmelamine (HMMM) were used to adhesion promoter. Since cobalt salts accelerate sulphidation rate of zinc at zinc coated steel cord surface, pullout force of rubber compound applying cobalt salts was increased compared to that of rubber compound without applying cobalt salts. Pullout force and rubber coverage of rubber compounds applying all adhesion promoters were superior because strong interlocking between rubber matrix increased modulus due to applying RF resin and HMMM and grown zinc sulfides at zinc coated steel cord surface.

본 연구에서는 아연 코팅 스틸코드와 접착증진제가 적용된 배합고무와의 접착 특성을 연구하였다. 접착증진제로는 cobalt boroacylate (코발트 염), resorcinol-formaldehyde resin (RF resin) 그리고 hexamethoxymethylmelamine (HMMM)을 사용하였다. 코발트 염이 첨가된 배합고무에서는 코발트 염이 아연 코팅 스틸코드 표면에서 아연 황화물 성장을 촉진시켜 코발트 염이 포함되지 않은 배합고에 비하여 pullout force가 증가하는 것을 확인하였다. 또한 코발트 염, RF resin과 HMMM을 모두 적용한 배합고무의 경우, 코발트 염은 아연 황화물 성장을 촉진시키고, RF resin과 HMMM은 배합고무의 modulus를 높여 고무 matrix로 성장한 아연 황화물을 더 강하게 interlocking하기 때문에 pullout force와 스틸코드의 고무 부착율이 가장 높게 나타난다는 것을 확인하였다.

Keywords

References

  1. W. J. van Ooij, Rubber Chem. Technol., 52, 605 (1979). https://doi.org/10.5254/1.3535231
  2. S. Buchan, Rubber to Metal bonding, Crosby Lockwood, London (1948).
  3. W. J. van Ooij, Ruuber Chem. Technol., 57, 421 (1984). https://doi.org/10.5254/1.3536016
  4. G. Haemers, Adhesion, London Barking. 4th ed., 175 (1980).
  5. W. J. van Ooij, Rubber Chem. Technol., 51, 52 (1978). https://doi.org/10.5254/1.3535727
  6. N. A. Darwish, A. B. Shehata, Ahmed I. Abou-Kandil, A. A. Abd El-Megeed, S. N. Lawandy, and B. K. Saleh, Int. J. Adhes. Adhes., 40, 135 (2013). https://doi.org/10.1016/j.ijadhadh.2012.09.003
  7. P. L. Cho, G. S. Jeon, S. K. Ryu, and G. Seo, Korean Chem. Eng. Res., 37, 834 (1999).
  8. T. Hotaka and Y. Ishikawa, Rubber Chem. Technol., 78, 175 (2005). https://doi.org/10.5254/1.3547876
  9. R. B. Durairaj, Resorcinol-chemistry, technology and applications: resorcinol formaldehyde latex (RFL) adhesives and applications, New York (NY), Springer (2005).
  10. S. Van der Meer, Rubber Chem. Technol., 18, 853 (1945). https://doi.org/10.5254/1.3546784
  11. A. Greth, Angew. Chem., 51, 719 (1938). https://doi.org/10.1002/ange.19380514203
  12. G. S. Fielding-Russel, D. I. Livingston, and D. W. Nicholson, Rubber Chem. Technol., 53, 950 (1980). https://doi.org/10.5254/1.3535070
  13. Bryan Crowther, Handbook of rubber bonding, Chap. 6, RAPRA Technology LTD (2001).
  14. G. S. Jeon, S. W. Jeong, and G. Seo, Korean chem. Eng. Res., 35, 396 (1997).