DOI QR코드

DOI QR Code

이중편파레이더 시뮬레이터 개발을 위한 2차원 영상우적계 관측자료의 활용가능성 연구

Study on the Application of 2D Video Disdrometer to Develope the Polarimetric Radar Data Simulator

  • 김해림 (기상청 기상레이더센터 레이더분석과) ;
  • 박혜숙 (기상청 기상레이더센터 레이더분석과) ;
  • 박향숙 (기상청 기상레이더센터 레이더분석과) ;
  • 박종서 (기상청 기상레이더센터 레이더분석과)
  • Kim, Hae-Lim (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration) ;
  • Park, Hye-Sook (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration) ;
  • Park, Hyang Suk (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration) ;
  • Park, Jong-Seo (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration)
  • 투고 : 2013.12.27
  • 심사 : 2014.05.06
  • 발행 : 2014.06.30

초록

The KMA has cooperated with the Oklahoma University in USA to develop a Polarimetric Radar Data (PRD) simulator to improve the microphysical processes in Korea Local Analysis and Prediction System (KLAPS), which is critical for the utilization of PRD into Numerical Weather Prediction (NWP) field. The simulator is like a tool to convert NWP data into PRD, so it enables us to compare NWP data with PRD directly. The simulator can simulate polarimetric radar variables such as reflectivity (Z), differential reflectivity ($Z_{DR}$), specific differential phase ($K_{DP}$), and cross-correlation coefficient (${\rho}_{hv}$) with input of the Drop Size Distribution (DSD) and scattering calculation of the hydrometeors. However, the simulator is being developed based on the foreign observation data, therefore the PRD simulator development reflecting rainfall characteristics of Korea is needed. This study analyzed a potential application of the 2-Dimension Video Disdrometer (2DVD) data by calculating the raindrop axis ratio according to the rain-types to reflect Korea's rainfall characteristics into scattering module in the simulator. The 2DVD instrument measures the precipitation DSD including the fall velocity and the shape of individual raindrops. We calculated raindrop axis ratio for stratiform, convective and mixed rainfall cases after checking the accuracy of 2DVD data, which usually represent the scattering characteristics of precipitation. The raindrop axis ratio obtained from 2DVD data are compared with those from foreign database in the simulator. The calculated the dual-polarimetric radar variables from the simulator using the obtained raindrop axis ratio are also compared with in situ dual-polarimetric observation data at Bislsan (BSL). 2DVD observation data show high accuracies in the range of 0.7~4.8% compared with in situ rain gauge data which represents 2DVD data are sufficient for the use to simulator. There are small differences of axis ratio in the diameter below 1~2 mm and above 4~5 mm, which are more obvious for bigger raindrops especially for a strong convective rainfall case. These differences of raindrop axis ratio between domestic and foreign rainfall data base suggest that the potential use of disdrometer observation can develop of a PRD simulated suitable to the Korea precipitation system.

키워드

참고문헌

  1. Atlas, D., R. C. Srivastava, and R. S. Sekkon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 2, 1-35.
  2. Atlas, D., and C. W. Ulbrich, 1977: Path and area integrated rainfall measurement by microwave attenuation in the 1-3 cm band. J. Appl. Meteor., 16, 327-332. https://doi.org/10.1175/1520-0450(1977)016<0327:SNAIHS>2.0.CO;2
  3. Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674-685. https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2
  4. Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic Technol., 21, 584-598. https://doi.org/10.1175/1520-0426(2004)021<0584:COPRDS>2.0.CO;2
  5. Capsoni, C., M. D'Amico, and R. Nebuloni, 2001: A multiparameter polarimetric radar simulator. J. Atmos. Oceanic Technol., 18, 1799-1809. https://doi.org/10.1175/1520-0426(2001)018<1799:AMPRS>2.0.CO;2
  6. Dawson, Daniel T., Edward R. Mansell, Youngsun Jung, Louis J. Wicker, Matthew R. Kumjian, and Ming Xue, 2014: Low-level ZDR signatures in supercell forward flanks: the role of size sorting and melting of hail. J. Atmos. Sci., 71, 276-299. https://doi.org/10.1175/JAS-D-13-0118.1
  7. Green, A. W., 1975: An approximation for the shapes of large raindrops. J. Appl. Meteor., 14, 1578-1583. https://doi.org/10.1175/1520-0450(1975)014<1578:AAFTSO>2.0.CO;2
  8. Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water drops in stagnant air. J. Meteor., 6, 243-248. https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
  9. Habib, E., W. F. Krajewski, and A. Kruger, 2001: Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng., 6, 159-166. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:2(159)
  10. Hagen, M., and S. Yuter, 2003: Relations between radar reflectivity, liquid water content, and rainfall rate during the MAPSOP. Q. J. Roy. Meteor. Soc., 129, 477-493. https://doi.org/10.1256/qj.02.23
  11. Handwerker, J., and W. Straub, 2011: Optimal Determina tion of Parameters for Gamma-Type Drop Size Distributions Based on Moments. J. Atmos. Oceanic Technol., 28, 513-529. https://doi.org/10.1175/2010JTECHA1474.1
  12. Huang, G. J., V. N. Bringi, and M. Thurai, 2008: Orientation angle distributions of drops after 80-m fall using a 2D video disdrometer. J. Atmos. Oceanic Technol., 25, 1717-1723. https://doi.org/10.1175/2008JTECHA1075.1
  13. Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using ensemble kalman filter. Part I: Observation operators for reflectivity and polarimetric variable. Mon, Wea. Rev., 136, 2228-2245. https://doi.org/10.1175/2007MWR2083.1
  14. Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon, Wea. Rev., 136, 2246-2260. https://doi.org/10.1175/2007MWR2288.1
  15. Jung, Y.,M. Xue, and G. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146-163. https://doi.org/10.1175/2009JAMC2178.1
  16. Jung, Y., M. Xue, and M. Tong, 2012: Ensemble Kalman Filter Analyses of the 29-30 May 2004 Oklahoma Tornadic Thunderstorm using One- and Two-Moment Bulk microphysics Schemes, with verification against polarimetric radar data. Mon, Wea. Rev., 140, 1457-1475. https://doi.org/10.1175/MWR-D-11-00032.1
  17. Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer. J. Atmos. Sci., 19, 602-617.
  18. McFarquhar, G. M., and R. List, 1993: The effect of curve fits for the disdrometer calibration on raindrop spectra, rainfall rate, and radar reflectivity. J. Appl. Meteor., 32, 774-782. https://doi.org/10.1175/1520-0450(1993)032<0774:TEOCFF>2.0.CO;2
  19. Pruppacher, H., and K. V. Beard, 1970: A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q. J. Roy. Meteor. Soc., 96, 247-256. https://doi.org/10.1002/qj.49709640807
  20. Ryzhkov, A. V., and D. S. Zrnic, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125-134. https://doi.org/10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2
  21. Sheppard, B. E., and P. I. Joe, 1994: Comparison of raindrop size distribution measurements by a Joss-Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSSS Doppler radar. J. Atmos. Oceanic Technol., 11, 874-887. https://doi.org/10.1175/1520-0426(1994)011<0874:CORSDM>2.0.CO;2
  22. Snyder, J., H. B. Bluestein, D. T. Dawson II, and Y. Jung, 2013: Examining the effect of the vertical wind shear environment on polarimetric signatures in numerically- simulated supercells, 36th Conference on Radar Meteorology, Breckenridge. CO.
  23. Thurai, M., and V. N. Bringi, 2005: Drop Axis Ratios from a 2D Video Disdrometer. J. Atmos. Oceanic Technol., 22, 966-978. https://doi.org/10.1175/JTECH1767.1
  24. Tokay, A., D. B. Wolff, K. R. Wolff, and P. Bashor, 2003: Rain gauge and disdrometer measurements during the keys Area Microphysics Project (KAMP). J. Atmos. Oceanic Technol., 20, 1460-1477. https://doi.org/10.1175/1520-0426(2003)020<1460:RGADMD>2.0.CO;2
  25. Vivekanandan, J., V. N. Bringi, M. Hagen, and G. Zhang, 1994: Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens., 32, 1-10. https://doi.org/10.1109/36.285183
  26. Wang, J., B. L. Fisher, and D. B. Wolff, 2008: Estimating rain rates from tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 25, 43-56. https://doi.org/10.1175/2007JTECHA895.1
  27. Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830-841. https://doi.org/10.1109/36.917906