전립선암 방사선치료 시 광자극발광선량계를 이용한 광중성자선량 평가

Evaluation of Photoneutron Dose for Prostate Cancer Radiation Therapy by Using Optically Stimulated Luminescence Dosimeter (OSLD)

  • 이주아 (가톨릭대학교 인천성모병원 방사선종양학과) ;
  • 백금문 (서울아산병원 방사선종양학과) ;
  • 김연수 (서울아산병원 방사선종양학과) ;
  • 손순룡 (서울아산병원 영상의학과) ;
  • 최관우 (서울아산병원 영상의학과) ;
  • 유병규 (원광보건대학교 방사선과) ;
  • 정회원 (백석문화대학교 방사선과) ;
  • 정재홍 (부천순천향대학교병원 방사선종양학과) ;
  • 김기원 (삼성서울병원 영상의학과) ;
  • 민정환 (신구대학교 방사선과)
  • Lee, Joo-Ah (Department of Oncology, Catholic University of Korea Incheon St.Mary's Hospital) ;
  • Back, Geum-Mun (Department of Oncology, Asan Medical Center) ;
  • Kim, Yeon-Soo (Department of Oncology, Asan Medical Center) ;
  • Son, Soon-Yong (Department of Radiology, Asan Medical Center) ;
  • Choi, Kwan-Woo (Department of Radiology, Asan Medical Center) ;
  • Yoo, Beong-Gyu (Department of Radiological Science, Wonkwang Health Science University) ;
  • Jeong, Hoi-Woun (Department of Radiological Science, Beakseok Culture University) ;
  • Jung, Jae-Hong (Department of Oncology, Soonchunhyang University Bucheon Hospital) ;
  • Kim, Ki-Won (Department of Radiology, Samsung Medical Center) ;
  • Min, Jung-Whan (Department of Radiological Science, Shin-Gu University)
  • 투고 : 2014.04.30
  • 심사 : 2014.06.17
  • 발행 : 2014.06.30

초록

본 연구는 전립선암의 방사선치료에 적용되는 치료기법별 세기조절방사선치료의 적절한 조사문수의 선택 및 광중성자 피폭을 고려한 방사선 치료계획 수립을 위한 기초자료를 제공하고자 하였다. 연구대상은 2013년 9월부터 2014년 1월까지 5개월 동안 전립선암으로 방사선치료를 받은 환자 10명을 대상으로 하였다. 그리고 3-dimensional conformal radiotherapy (3D-CRT), volumetric-modulated arc radiotherapy (VMAT), intensity modulated radiation therapy (IMRT) 5, 7, 9 조사문으로 각각 치료계획을 수립하였다. 기술통계와 분산분석으로 광중성자선량의 평균적 차이를 비교하였으며, 상관관계분석과 회귀분석으로 상관성 및 영향을 분석하였다. 연구 결과, 치료기법별로는 3D-CRT가 가장 낮았다. 또한 IMRT가 가장 높게 측정되었으며, 통계적으로 매우 유의하였다 (p<.01). 세기조절방사선치료 조사문수별 광중성자선량은 평균 $4.37{\pm}1.08mSv$였으며, 조사문수 간에 통계적으로 매우 유의한 차이를 보였다(p<.01). 그리고 조사문수와 광중성자선량은 상관계수가 0.570으로 나타나 통계적으로 매우 유의한 양의 상관관계를 보였다 (p<.01). 조사문수와 광중성자선량의 선형회귀분석 결과, 조사문수가 1단계 증가할 때마다 평균적으로 광중성자선량이 0.373배로 유의하게 증가하였다. 결론적으로 전립선암의 방사선치료에 빈번히 사용하고 있는 IMRT의 조사문수의 선택 및 광중성자 피폭선량 및 방사선 치료계획의 질적 수준 평가를 고려한 적절한 치료계획 선택에 있어 기초자료로 활용될 수 있으리라 기대된다.

This study is to provide basic information regarding photoneutron doses in terms of radiation treatment techniques and the number of portals in intensity-modulated radiation therapy (IMRT) by measuring the photoneutron doses. Subjects of experiment were 10 patients who were diagnosed with prostate cancer and have received radiation treatment for 5 months from September 2013 to January 2014 in the department of radiation oncology in S hospital located in Seoul. Thus, radiation treatment plans were created for 3-Dimensional Conformal Radiotherapy (3D-CRT), Volumetric-Modulated Arc Radiotherapy (VMAT), IMRT 5, 7, and 9 portals. The average difference of photoneutron dose was compared through descriptive statistics and variance analysis, and analyzed influence factors through correlation analysis and regression analysis. In summarized results, 3D-CRT showed the lowest average photoneutron dose, while IMRT caused the highest dose with statistically significance (p <.01). The photoneutron dose by number of portals of IMRT was $4.37{\pm}1.08mSv$ in average and statistically showed very significant difference among the number of portals (p <.01). Number of portals and photoneutron dose are shown that the correlation coefficient is 0.570, highly statistically significant positive correlation (p <.01). As a result of the linear regression analysis of number of portals and photoneutron dose, it showed that photoneutron dose significantly increased by 0.373 times in average as the number of portals increased by 1 stage. In conclusion, this study can be expected to be used as a quantitative basic data to select an appropriate IMRT plans regarding photoneutron dose in radiation treatment for prostate cancer.

키워드

참고문헌

  1. http://www.cancer.go.kr/mbs/cancer
  2. Sae-Chul Kim: A continuous increase in prevalence of prostate cancer in Korea and its Ccauses. Journal of the Korean Medical Association, 47(5), 394-402, 2004 https://doi.org/10.5124/jkma.2004.47.5.394
  3. Auvinen A, de Koning HJ, Coebergh JW, et al : Meeting the challenge of prostate cancer. European Journal of Cancer, 46(17), 3037-39, 2010 https://doi.org/10.1016/j.ejca.2010.09.037
  4. Pollack A, Zagars GK, Starkschall G, et al : Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys, 53(5), 1097-1105, 2002 https://doi.org/10.1016/S0360-3016(02)02829-8
  5. Bo-Kyoung Kim, Suk Won Park, Sung Whan Ha, et al : Pattern of decrease of prostate specific antigen after radical radiotherapy for the prostate cancer. The Journal of the Korean Society for therapeutic radiology and oncology, 17(2), 136-40, 1999
  6. Pasteau, Octave : Traitement du cancer de la prostate par le radium. Rev de Mal de la Nutriion, 363, 1911
  7. John R, Caulk : Carcinoma of the prostate. The American Journal of Cancer, 16, 1024-52, 1932
  8. Flocks RH : Interstitial irradiation therapy with a solution of Au-198 as part of combination therapy for prostatic carcinoma. J Nucl Med, 5, 691-705, 1964
  9. Chul-Whan Hwang : The dosimetric influence of rotational errors during radiation therapy for prostate cancer. Catholic University of Pusan, 2014
  10. Michael J, Zelefsky, Zvi Fuks, et al : Highdose intensity modulated radiation therapy for prostate cancer : early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys, 53, 1111-6, 2002 https://doi.org/10.1016/S0360-3016(02)02857-2
  11. Sung-Kyu Kim, Myung-Se Kim, Sang-Mo Yun, et al : Dose distribution of intensity modulated radiation therapy and 3 dimensional conformal radiation therapy in prostate cancer. Yeungnam University J of Med, 24(2), 538-43, 2007
  12. Erjona B, Ervis T, Elvisa K : Comparison of 3D CRT and IMRT tratment plans. Acta Inform Med, 21(3), 211-2, 2013 https://doi.org/10.5455/aim.2013.21.211-212
  13. Hae-Sook Kim, Jin-Kyung Jang, Hyun-soon Sohn, et al : Anticancer drug use and out-ofpocket money burden in Korean cancer patients. Korean journal of clinical pharmacy, 22(3), 239-50, 2012
  14. Rebecca MH, Michele SF, Nolan El, et al : Investigation of secondary neutron dose for 18 MV dynamic MLC IMRT delivery. Medical Physics, 32(3), 786, 2005 https://doi.org/10.1118/1.1861162
  15. Oh-Nam Yang, Cheong-Whan Lim : Study on the photoneutrons produced in 15 MV medical linear accelerators. Korean society of radiological science, 35(4), 335-43, 2012
  16. I Gudowska, A Brahme, P Andreo, et al : Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV. Phys Med Biol, 44(9), 2099-125, 1999 https://doi.org/10.1088/0031-9155/44/9/301
  17. Dietze G, Siebert BR : Photon and neutron dose contributions and mean quality factors phantoms of different size irradiated by monoenergetic neutrons. Radiat Res, 140(1), 130-3, 1994 https://doi.org/10.2307/3578578
  18. Jung-Suk Shin, Young-Yih Han, Sang-Gyu Ju, et al : Analysis of the imaging dose for IGRT gated treatments. The Korean Society for Radiation Oncology, 27(1), 42-48, 2009 https://doi.org/10.3857/jkstro.2009.27.1.42
  19. Jursinic PA : Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose. Med Phys, 37(1), 132-40, 2010 https://doi.org/10.1118/1.3267489
  20. Jeong-Ho Kim : Selection of reduction techniques of artifact at radiation treatment. Chonbuk National University, 2013
  21. Jursinic PA : Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Med Phys, 34(12), 4594-604, 2007 https://doi.org/10.1118/1.2804555
  22. Hye-li Park, Sei-Kyung Chang, Ja-young Kim, et al :Permanent brachytherapy of localized prostate cancer preliminary results. The Korean Society for Radiation Oncology, 29(2), 71-82, 2011 https://doi.org/10.3857/jkstro.2011.29.2.71
  23. Levinger JS, Bethe HA : Neutron yield from the nuclear photo effect. Phys Rev, 5, 221-2, 1952
  24. Hall EJ, Wuu CS : Radiation-induced second cancers : the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys, 56, 83-88, 2003 https://doi.org/10.1016/S0360-3016(03)00073-7
  25. Cheol-Soo Park : A study on the neutron dose distribution in case of 10 MV X-rays radiotherapy. Korean society of radiological science, 31(4), 415-27, 2008
  26. A Zanini, C Durisi, F Fasolo, et al : Monte carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimator systems. Phys. Med. Biol, 49, 571-82, 2004 https://doi.org/10.1088/0031-9155/49/4/008
  27. Passmore C, Kirr M : Neutron response characterisation of an OSL neutron dosemeter. Radiat Prot Dosimetry, 144(1-4), 155-60, 2011 https://doi.org/10.1093/rpd/ncq300
  28. D'Errico F, Nath R, Silvano Gr, et al : In vivo neutron dosimetry during high-energy bremsstrahlung radiotherapy. Int J Radiat Oncol Biol Phys, 41(5), 1185-92, 1998 https://doi.org/10.1016/S0360-3016(98)00162-X
  29. Rivera JC, Falcao RC, deAlmeida CE : The measurement of photoneutron dose in the vicinity of clinical linear accelerators. Radiat Prot Dosimetry, 130, 403-9, 2008 https://doi.org/10.1093/rpd/ncn065
  30. ICRP Publication 103 : The 2007 Recommendations of the International Commission on Radiological Protection