DOI QR코드

DOI QR Code

Cytotoxicity and physical properties of tricalcium silicate-based endodontic materials

  • Jang, Young-Eun (Department of Conservative Dentistry, Chonnam National University School of Dentistry and Dental Science Research Institute) ;
  • Lee, Bin-Na (Department of Conservative Dentistry, Chonnam National University School of Dentistry and Dental Science Research Institute) ;
  • Koh, Jeong-Tae (Department of Pharmacology and Dental Therapeutics, Chonnam National University School of Dentistry and Dental Science Research Institute) ;
  • Park, Yeong-Joon (Department of Dental Materials, Chonnam National University School of Dentistry and Dental Science Research Institute) ;
  • Joo, Nam-Eok (University of Michigan School of Dentistry) ;
  • Chang, Hoon-Sang (Department of Conservative Dentistry, Chonnam National University School of Dentistry and Dental Science Research Institute) ;
  • Hwang, In-Nam (Department of Conservative Dentistry, Chonnam National University School of Dentistry and Dental Science Research Institute) ;
  • Oh, Won-Mann (Department of Conservative Dentistry, Chonnam National University School of Dentistry and Dental Science Research Institute) ;
  • Hwang, Yun-Chan (Department of Conservative Dentistry, Chonnam National University School of Dentistry and Dental Science Research Institute)
  • 투고 : 2013.10.10
  • 심사 : 2013.12.05
  • 발행 : 2014.05.30

초록

Objectives: The aim of this study was to evaluate the cytotoxicity, setting time and compressive strength of MTA and two novel tricalcium silicate-based endodontic materials, Bioaggregate (BA) and Biodentine (BD). Materials and Methods: Cytotoxicity was evaluated by using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-((phenylamino)carbonyl)-2H-tetrazolium hydroxide (XTT) assay. Measurements of 9 heavy metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, and zinc) were performed by inductively coupled plasma-mass spectrometry (ICP-MS) of leachates obtained by soaking the materials in distilled water. Setting time and compressive strength tests were performed following ISO requirements. Results: BA had comparable cell viability to MTA, whereas the cell viability of BD was significantly lower than that of MTA. The ICP-MS analysis revealed that BD released significantly higher amount of 5 heavy metals (arsenic, copper, iron, manganese, and zinc) than MTA and BA. The setting time of BD was significantly shorter than that of MTA and BA, and the compressive strength of BA was significantly lower than that of MTA and BD. Conclusions: BA and BD were biocompatible, and they did not show any cytotoxic effects on human periodontal ligament fibroblasts. BA showed comparable cytotoxicity to MTA but inferior physical properties. BD had somewhat higher cytotoxicity but superior physical properties than MTA.

키워드

참고문헌

  1. Cohen S, Hargreaves KM. Cohen's pathways of the pulp. 10th ed. St Louis: Mosby Elsevier; 2011. Chapter 21.
  2. Johnson BR. Considerations in the selection of a rootend filling material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;87:398-404. https://doi.org/10.1016/S1079-2104(99)70237-4
  3. Saxena P, Gupta SK, Newaskar V. Biocompatibility of root-end filling materials: recent update. Restor Dent Endod 2013;38:119-127. https://doi.org/10.5395/rde.2013.38.3.119
  4. Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD. Cytotoxicity of four root end filling materials. J Endod 1995;21:489-492. https://doi.org/10.1016/S0099-2399(06)80518-2
  5. Torabinejad M, Higa RK, McKendry DJ, Pitt Ford TR. Dye leakage of four root end filling materials: effects of blood contamination. J Endod 1994;20:159-163. https://doi.org/10.1016/S0099-2399(06)80326-2
  6. Koh ET, Torabinejad M, Pitt Ford TR, Brady K, McDonald F. Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Mater Res 1997;37:432-439. https://doi.org/10.1002/(SICI)1097-4636(19971205)37:3<432::AID-JBM14>3.0.CO;2-D
  7. Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR. Investigation of mineral trioxide aggregate for rootend filling in dogs. J Endod 1995;21:603-608. https://doi.org/10.1016/S0099-2399(06)81112-X
  8. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod 1995;21:349-353. https://doi.org/10.1016/S0099-2399(06)80967-2
  9. Monteiro Bramante C, Demarchi AC, de Moraes IG, Bernadineli N, Garcia RB, Spångberg LS, Duarte MA. Presence of arsenic in different types of MTA and white and gray Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:909-913. https://doi.org/10.1016/j.tripleo.2008.07.018
  10. Chang SW, Shon WJ, Lee W, Kum KY, Baek SH, Bae KS. Analysis of heavy metal contents in gray and white MTA and 2 kinds of Portland cement: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:642-646. https://doi.org/10.1016/j.tripleo.2009.12.017
  11. Maroto M, Barberia E, Planells P, Garcia Godoy F. Dentin bridge formation after mineral trioxide aggregate (MTA) pulpotomies in primary teeth. Am J Dent 2005;18:151-154.
  12. Boutsioukis C, Noula G, Lambrianidis T. Ex vivo study of the efficiency of two techniques for the removal of mineral trioxide aggregate used as a root canal filling material. J Endod 2008;34:1239-1242. https://doi.org/10.1016/j.joen.2008.07.018
  13. Chang SW. Chemical characteristics of mineral trioxide aggregate and its hydration reaction. Restor Dent Endod 2012;37:188-193. https://doi.org/10.5395/rde.2012.37.4.188
  14. Innovative BioCeramix, Inc.: Information. Available from: http://www.ibioceramix.com/Publications.html (updated 2012 Jan).
  15. Active Biosilicate Technology, Septodont. septodontusa. com. Available from: http://www.septodontusa.com/ products/biodentine (updated 2013 Oct 10).
  16. Park JW, Hong SH, Kim JH, Lee SJ, Shin SJ. X-ray diffraction analysis of white ProRoot MTA and Diadent BioAggregate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:155-158. https://doi.org/10.1016/j.tripleo.2009.08.039
  17. Zhang H, Pappen FG, Haapasalo M. Dentin enhances the antibacterial effect of mineral trioxide aggregate and bioaggregate. J Endod 2009;35:221-224. https://doi.org/10.1016/j.joen.2008.11.001
  18. De-Deus G, Canabarro A, Alves G, Linhares A, Senne MI, Granjeiro JM. Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells. J Endod 2009;35:1387-1390. https://doi.org/10.1016/j.joen.2009.06.022
  19. Yuan Z, Peng B, Jiang H, Bian Z, Yan P. Effect of bioaggregate on mineral-associated gene expression in osteoblast cells. J Endod 2010;36:1145-1148. https://doi.org/10.1016/j.joen.2010.03.025
  20. Chung CR, Kim E, Shin SJ. Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells. J Korean Acad Conserv Dent 2010;35:473-478. https://doi.org/10.5395/JKACD.2010.35.6.473
  21. Yan P, Yuan Z, Jiang H, Peng B, Bian Z. Effect of bioaggregate on differentiation of human periodontal ligament fibroblasts. Int Endod J 2010;43:1116-1121. https://doi.org/10.1111/j.1365-2591.2010.01786.x
  22. Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater 2013;29:e20-28.
  23. Laurent P, Camps J, De Meo M, Dejou J, About I. Induction of specific cell responses to a Ca(3)SiO(5)- based posterior restorative material. Dent Mater 2008; 24:1486-1494. https://doi.org/10.1016/j.dental.2008.02.020
  24. Laurent P, Camps J, About I. Biodentine(TM) induces TGF-$\beta$1 release from human pulp cells and early dental pulp mineralization. Int Endod J 2012;45:439-448. https://doi.org/10.1111/j.1365-2591.2011.01995.x
  25. Peng W, Liu W, Zhai W, Jiang L, Li L, Chang J, Zhu Y. Effect of tricalcium silicate on the proliferation and odontogenic differentiation of human dental pulp cells. J Endod 2011;37:1240-1246. https://doi.org/10.1016/j.joen.2011.05.035
  26. ISO-Standards ISO 9917-1:2007. Dentistry-Water-based cements-Part 1: powder/liquid acid-base cements. Geneve: International Organization for Standardization; 2007.
  27. Ma J, Shen Y, Stojicic S, Haapasalo M. Biocompatibility of two novel root repair materials. J Endod 2011;37: 793-798. https://doi.org/10.1016/j.joen.2011.02.029
  28. Camilleri J, Kralj P, Veber M, Sinagra E. Characterization and analyses of acid-extractable and leached trace elements in dental cements. Int Endod J 2012;45:737-743. https://doi.org/10.1111/j.1365-2591.2012.02027.x
  29. Chang SW, Baek SH, Yang HC, Seo DG, Hong ST, Han SH, Lee Y, Gu Y, Kwon HB, Lee W, Bae KS, Kum KY. Heavy metal analysis of ortho MTA and ProRoot MTA. J Endod 2011;37:1673-1676. https://doi.org/10.1016/j.joen.2011.08.020
  30. Sienko MJ, Plane RA. Chemistry. 5th ed. New York: McGraw-Hill; 1976. p363-398.
  31. Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TR. The constitution of mineral trioxide aggregate. Dent Mater 2005;21:297-303. https://doi.org/10.1016/j.dental.2004.05.010
  32. Wang X, Sun H, Chang J. Characterization of Ca3SiO5/ CaCl2 composite cement for dental application. Dent Mater 2008;24:74-82. https://doi.org/10.1016/j.dental.2007.02.006
  33. Huan Z, Chang J. Study on physicochemical properties and in vitro bioactivity of tricalcium silicate-calcium carbonate composite bone cement. J Mater Sci Mater Med 2008;19:2913-2918. https://doi.org/10.1007/s10856-008-3423-4
  34. Lee BN, Hwang YC, Jang JH, Chang HS, Hwang IN, Yang SY, Park YJ, Son HH, Oh WM. Improvement of the properties of mineral trioxide aggregate by mixing with hydration accelerators. J Endod 2011;37:1433-1436. https://doi.org/10.1016/j.joen.2011.06.013
  35. Neville AM. Properties of concrete. 3rd ed. New York: Longman Scientific and Technical; 1981. p269-351.

피인용 문헌

  1. beneath prefabricated stainless steel crown: a laboratory study vol.7, pp.4, 2015, https://doi.org/10.1111/jicd.12162
  2. Calcium silicate-based cements: composition, properties, and clinical applications vol.8, pp.2, 2017, https://doi.org/10.1111/jicd.12195
  3. Modified tricalcium silicate cement formulations with added zirconium oxide vol.21, pp.3, 2017, https://doi.org/10.1007/s00784-016-1843-y
  4. Brain aluminium accumulation and oxidative stress in the presence of calcium silicate dental cements vol.36, pp.10, 2017, https://doi.org/10.1177/0960327116679713
  5. Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry vol.41, pp.1, 2016, https://doi.org/10.5395/rde.2016.41.1.29
  6. Biological response of commercially available different tricalcium silicate-based cements and pozzolan cement vol.80, pp.9, 2017, https://doi.org/10.1002/jemt.22891
  7. Biodentine™ material characteristics and clinical applications: a 3 year literature review and update vol.19, pp.1, 2018, https://doi.org/10.1007/s40368-018-0328-x
  8. Effect of phytic acid on the setting times and tensile strengths of calcium silicate-based cements pp.13291947, 2018, https://doi.org/10.1111/aej.12314
  9. Root perforations: a review of diagnosis, prognosis and materials vol.32, pp.suppl 1, 2018, https://doi.org/10.1590/1807-3107bor-2018.vol32.0073
  10. study vol.43, pp.3, 2018, https://doi.org/10.5395/rde.2018.43.e18
  11. Effects of four novel root-end filling materials on the viability of periodontal ligament fibroblasts vol.43, pp.3, 2018, https://doi.org/10.5395/rde.2018.43.e24
  12. Effects of chelating agent and acids on Biodentine vol.63, pp.2, 2018, https://doi.org/10.1111/adj.12609
  13. Cytotoxic effects of mineral trioxide aggregate, calcium enrichedmixture cement, Biodentine and octacalcium pohosphate onhuman gingival fibroblasts vol.10, pp.2, 2014, https://doi.org/10.15171/joddd.2016.012
  14. Management of Dens Invaginatus Type II Associated with Immature Apex and Large Periradicular Lesion Using Platelet-rich Fibrin and Biodentine vol.43, pp.10, 2014, https://doi.org/10.1016/j.joen.2017.04.005
  15. Tricalcium silicate cements: osteogenic and angiogenic responses of human bone marrow stem cells vol.127, pp.3, 2019, https://doi.org/10.1111/eos.12613
  16. Biological Effects of Tricalcium Silicate Nanoparticle-Containing Cement on Stem Cells from Human Exfoliated Deciduous Teeth vol.10, pp.7, 2014, https://doi.org/10.3390/nano10071373
  17. Minimal Intervention in Dentistry: A Literature Review on Biodentine as a Bioactive Pulp Capping Material vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/5569313
  18. Effect of different manipulations on the physical, chemical and microstructural characteristics of Biodentine vol.37, pp.7, 2014, https://doi.org/10.1016/j.dental.2021.03.021
  19. Chitosan-Based Accelerated Portland Cement Promotes Dentinogenic/Osteogenic Differentiation and Mineralization Activity of SHED vol.13, pp.19, 2021, https://doi.org/10.3390/polym13193358