DOI QR코드

DOI QR Code

Analyzing Factors Affecting Public Transit Transfer Volume: Focused on Daegu City

대중교통 환승통행량 영향요인 분석: 대구시를 대상으로

  • Hwang, Jung Hoon (Department of Urban Planning and Engineering, Yeungnam University)
  • Received : 2013.08.29
  • Accepted : 2014.05.08
  • Published : 2014.06.30

Abstract

This study attempted to identify the characteristics of transfer trips between subways and buses in Daegu city and to analyze various impact factors that influence the number of transfer trips using a multiple regression analysis. Based on the results, this study aims to propose some policy implications to improve the operation efficiency of a transit center. As a result, it is found that the number of transfer trips is inversely proportional to transfer time, while directly proportional to the number of connected bus routes, subway's spatial location, and bus route connection index. Specifically, it is found that the number of transfer trips are mostly affected by bus route connection index.

본 연구에서는 대구시의 지하철과 버스간의 환승통행을 대상으로 환승통행특성을 분석하고 또한 다중회귀분석을 통해 버스와 지하철간의 환승통행량에 영향을 미치는 요인을 분석하여 이를 통한 대중교통환승센터에서 보다 많은 환승통행량이 처리될 수 있는 방안에 대해 모색하였다. 그 결과 환승시간은 환승통행량과 반비례하는 반면, 연계버스 노선수, 지하철역의 공간적 위치, 버스노선의 연계지수는 비례관계가 있는 것으로 나타났다. 또한 표준화계수로부터 지하철역과 연계되는 버스노선의 특성을 반영한 버스노선의 연계지수가 가장 많은 영향을 미친다는 것을 알 수 있었다.

Keywords

References

  1. Cha D. D., Oh J. H., Park W. Y., Park S. B. (2009), A Model of a Relative Evaluation of the Transfer Distance Between Two Modes, J. Korean Soc. Transp., 27(1), Korean Society of Transportation, 35-42.
  2. Kim G. S., Kim C. L. (2005), Regression Analysis, Kyowoosa, Korea.
  3. Kim J. H., Son J. Y., Kang M. H. (2012), The Analysis of Transit Transfer in Incheon by Card Data, Incheon Development Institute.
  4. Kim K. H., Lee S. C. (2012), A Study on the Development Directions of Transfer Stations with Traffic Cards Data - Focused on Daegu City, J. Korean Soc. Civ. Eng., 32(6D), Korean Society of Civil Engineers, 539-547. https://doi.org/10.12652/Ksce.2012.32.6D.539
  5. Kwon Y. J., Kim H. B. (2005), Establishment of the Functions and Design Criteria of Different Types of Transit Centers, J. Korea Plan. Assoc., 40(2), Korea Planners Association, 121-131.
  6. Lee. E. J. (2003a), The Analyzing Methods of Mass Transit Travel Behavior by Smart Card Data-Base, Busan Development Institute.
  7. Lee. S. H. (2003b), Analysis on Transfer Trip of Seoul, Seoul Development Institute.
  8. Park K. C., Song J. H. (2008), Analysis on Transfer Trip of GyeongGi-Do, Gyeonggi Research Institute.
  9. Yoo G. S. (2012), A Model and Algorithm for Optimizing the Location of Transit Transfer Centers, J. Korean Soc. Transp., 30(1), Korean Society of Transportation, 125-133. https://doi.org/10.7470/jkst.2012.30.1.125

Cited by

  1. Exploring the Relationship between Transfer Trips and Land Use vol.15, pp.2, 2016, https://doi.org/10.12815/kits.2016.15.2.001
  2. Estimation of Hourly Variations in Public Transit Demand according to the Addition of Sales Facilities to Railway Stations: Focusing on Metro and Bus Transit Demand vol.18, pp.6, 2015, https://doi.org/10.7782/JKSR.2015.18.6.630
  3. Factor Analysis for Transit Transfer using Public Traffic Card Data vol.16, pp.1, 2017, https://doi.org/10.12815/kits.2017.16.1.50
  4. 교통카드 데이터의 개별 통행 동적 시각화 방법 vol.26, pp.2, 2018, https://doi.org/10.7319/kogsis.2018.26.2.003
  5. 심층신경망 모형을 활용한 대중교통 이용자의 환승시간 추정에 관한 연구 vol.19, pp.1, 2014, https://doi.org/10.12815/kits.2020.19.1.32
  6. 교통카드데이터를 활용한 교통약자 대중교통 환승통행패턴 분석: 버스 지하철 간 환승을 중심으로 vol.20, pp.2, 2021, https://doi.org/10.12815/kits.2021.20.2.58