DOI QR코드

DOI QR Code

재조합 탄산무수화 효소 첨가 생산배지를 이용한 Actinobacillus succinogenes 유래의 숙신산 생산성 향상

Enhanced Production of Succinic Acid by Actinobacillus succinogenes using the Production Medium Supplemented with Recombinant Carbonic Anhydrases

  • 박상민 (강원대학교 의생명과학대학 분자생명과학과) ;
  • 엄규리 (강원대학교 의생명과학대학 분자생명과학과) ;
  • 김상용 (한국생산기술연구원) ;
  • 정용섭 (전북대학교 식품공학과) ;
  • 이도훈 (한국생산기술연구원) ;
  • 전계택 (강원대학교 의생명과학대학 분자생명과학과)
  • Park, Sang-Min (College of Biomedical Science, Kangwon National University) ;
  • Eum, Kyuri (College of Biomedical Science, Kangwon National University) ;
  • Kim, Sangyong (Korea Institute of Industrial Technology) ;
  • Jeong, Yong-Seob (Department of Food Science and Technology, Chunbuk National University) ;
  • Lee, Dohoon (Korea Institute of Industrial Technology) ;
  • Chun, Gie-Taek (College of Biomedical Science, Kangwon National University)
  • 투고 : 2014.05.01
  • 심사 : 2014.05.22
  • 발행 : 2014.06.30

초록

Succinic acid, a representative biomass-derived platform chemical, is a major fermentation product of Actinobacillus succinogenes. It is well known that carbon dioxide is consumed during the succinate fermentation, but the biochemical mechanism behind this phenomenon is not yet understood well. In this study, it was found that the addition of carbonic anhydrase (CA)s into media significantly enhances the succinic acid production by A. succinogenes during the fermentation supplied with carbon dioxide. It is likely that the (bi) carbonate produced by the CA activity from gaseous carbon dioxide is favoured by A. succinogenes for consumption and utilization. Therefore, the $MgCO_3$ requirement could be significantly reduced without compromising the succinate productivity. Furthermore, because of too high price of the commercial carbonic anhydrase, it was undertaken to economically overproduce a cyanobacterial carbonic anhydrase by the use of a recombinant Pichia pastoris. An expression vector system was constructed with the carbonic anhydrase gene PCR-cloned from Cyanobacterium Synechocystis sp., and introduced into P. pastoris for fermentation studies. About 95.9 g/L of succinic acid was produced in the production medium with 30 ppm of carbonic anhydrase, approximately 2 fold higher productivity compared to the parallel process with no supplementation of the enzyme. It is expected that this method can provide a valuable way of overcoming inefficiencies inherent in gas supply during $CO_2$-based bioprocesses like succinic acid fermentation.

키워드

참고문헌

  1. Zeikus, J. G., M. K. Jain, and P. Elankovan (1999) Biotechnology of succinic acid production and markets for derived industrial products. APPl. Microbiol. Biotechnol. 51: 545-552. https://doi.org/10.1007/s002530051431
  2. McKinlay, J. B., C. Vieille, and J. G. Zeikus (2007) Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol. 76: 727-740. https://doi.org/10.1007/s00253-007-1057-y
  3. Guettler, M. V., D. Rumler, and M. K. Jain (1999) Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int. J. Syst. Bacteriol. 49: 207-216. https://doi.org/10.1099/00207713-49-1-207
  4. Lee, P. C., S. Y. Lee, S. H. Hong, and H. N. Chang (2002) Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl. Microbiol. Biotechnol. 58: 663-668. https://doi.org/10.1007/s00253-002-0935-6
  5. Lin, H., G. N. Bennett, and K. Y. San (2005) Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Biotechnol. Bioeng. 89: 148-156. https://doi.org/10.1002/bit.20298
  6. Lee, P. C., W. G. Lee, S. Y. Lee, and H. N. Chang (2001) Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol. Bioeng. 72: 41-48. https://doi.org/10.1002/1097-0290(20010105)72:1<41::AID-BIT6>3.0.CO;2-N
  7. Nghiem, N. P., B. H. Davison, B. E. Suttle, and G. R. Richardson (1997) Production of succinic acid by Anaerobiospirillum succiniciproducens. Appl. Biochem. Biotechnol. 63: 565-576.
  8. Oh, I. J., H. W. Lee, C. H. Park, S. Y. Lee, and J. Lee (2008) Succinic acid production by continuous fermentation process using Mannheimia succiniciproducens LPK7. J. Microbiol. Biotechn. 18: 908-912.
  9. Wu, H., Z. M. Li, L. Zhou, and Q. Ye (2007) Improved succinic acid production in the anaerobic culture of an Escherichia coli PflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl. Environ. Microbiol. 73: 7837-7843. https://doi.org/10.1128/AEM.01546-07
  10. McKinlay, J. B., Y. S. Hill, J. G. Zeikus, and C. Vieille (2007) Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13 C-labeled metabolic product isotopomers. Metabolic Engineering 9: 177-192. https://doi.org/10.1016/j.ymben.2006.10.006
  11. Lu, S. Y., M. A. Eiteman, and E. Altman (2009) Effect of $CO_2$ on succinate production in dual-phase Escherichia coli fermentations. J. Biotechnol. 143: 213-223. https://doi.org/10.1016/j.jbiotec.2009.07.012
  12. McKinlay, J. B., J. G. Zeikus, and C. Vieille (2005) Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl. Environ. Microbiol. 71: 6651-6656. https://doi.org/10.1128/AEM.71.11.6651-6656.2005
  13. VanderWerf, M. J., M. V. Guettler, M. K. Jain, and J. G. Zeikus (1997) Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch. Microbiol. 167: 332-342. https://doi.org/10.1007/s002030050452
  14. Xi, Y. L., K. Q. Chen, J. Li, X. I. Fang, X. Y. Zheng, S. S. Sui, M. Jiang, and P. Wei (2011) Optimization of culture conditions in $CO_2$ fixation for succinic acid production using Actinobacillus succinogenes. J Ind. Microbiol. Biotechnol. 38: 1605-1612. https://doi.org/10.1007/s10295-011-0952-5
  15. Koropatkin, N. M., D. W. Koppenaal, H. B. Pakrasi, and T. J. Smith (2007) The Structure of a Cyanobacterial Bicarbonate Transport Protein, CmpA. J. Biological Chem. 282: 2606-2614. https://doi.org/10.1074/jbc.M610222200
  16. Shibata, M., H. Katoh, M. Sonoda, H. Ohkawa, M. Shimoyama, H. Fukuzawa, A. Kaplan, and T. Ogawa (2002) Genes Essential to Sodium-dependent Bicarbonate Transport in Cyanobacteria. J. Biological Chem. 277: 18658-18664. https://doi.org/10.1074/jbc.M112468200
  17. Siiltemeyer, D., G. D. Price, D. A. Bryant, and M. R. Badger. (1997) PsaE- and NdhF-mediated electron transport affect bicarbonate transport rather than carbon dioxide uptake in the Cyanobacterium Synechococcus sp. PCC7002. Planta. 201: 36-42. https://doi.org/10.1007/BF01258678
  18. Lindskog, S. (1997) Structure and mechanism of carbonic anhydrase. Pharmacol. Ther. 74: 1-20. https://doi.org/10.1016/S0163-7258(96)00198-2
  19. Badger, M. R. and G. D. Price (1994) The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Bio. 45: 369-392. https://doi.org/10.1146/annurev.pp.45.060194.002101
  20. Silverman, D. N. (1991) The catalytic mechanism of carbonic anhydrase. Can. J. Bot. 69: 1070-1078. https://doi.org/10.1139/b91-137
  21. Sultemeyer, D., C. Schmidt, and H. P. Fock (1993) Carbonic anhydrase in higher plants and aquatic microorganisms. Physiol. Plant. 88: 179-190. https://doi.org/10.1111/j.1399-3054.1993.tb01776.x
  22. Suzuki, E., Y. Shiraiwa, and S. Miyachi (1994) The cellular and molecular aspects of carbonic anhydrase in photosynthetic microorganisms. Prog. Phycol. Res. 10: 2-54.
  23. Tashian, R. E. (1989) The carbonic anhydrase: widening perspectives on their evolution, expression and function. Bioessays. 10: 186-192. https://doi.org/10.1002/bies.950100603
  24. Wang, D., Q. Lia, W. Lia, J. Xinga, and Z. Su (2009) Improvement of succinate production by overexpression of a cyanobacterial carbonic anhydrase in Escherichia coli. Enzyme Microb. Technol. 45: 491-497. https://doi.org/10.1016/j.enzmictec.2009.08.003
  25. Dagert, M. and S. Ehrlich (1979) Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6: 23-28. https://doi.org/10.1016/0378-1119(79)90082-9
  26. Li, P., A. Anumanthan, X. G. Gao, K. Ilangovan, V. V. Suzara, N. Düzgüness, and V. Renugopalakrishnan (2007) Expression of Recombinant Proteins in Pichia Pastoris. Appl. Biochem. Biotechnol. 142: 105-124. https://doi.org/10.1007/s12010-007-0003-x
  27. Arjmand, S., E. Bidram, A. S. Lotfi, M. Shamsara, and S. J. Mowla (2011) Expression and Purification of Functionally Active Recombinant Human Alpha 1-Antitrypsin in Methylotrophic Yeast Pichia pastoris. J. Med. Biotechnol. 3: 127-134.
  28. Jahic, M., A. Veide, T. Charoenrat, T. Teeri, and S. O. Enfors (2006) Process Technology for Production and Recovery of Heterologous Proteins with Pichia pastoris. Biotechnol. Prog. 22: 1465-1473. https://doi.org/10.1002/bp060171t
  29. Siege, R. S. and R. A. Brierley (1989) Methylotrophic Yeast Pichia pastoris Produced in High-Cell-Density Fermentations with High Cell Yields as Vehicle for Recombinant Protein Production. Biotechnol. Bioeng. 34: 403-404. https://doi.org/10.1002/bit.260340315
  30. Tashian, R. E., D. P. Douglas, and Y. L. Yu (1964) Esterase and hydrase activity of carbonic anhydrase-I from primate erythrocytes. Biochem. Biophys. Res. Commun 14: 256-261. https://doi.org/10.1016/0006-291X(64)90445-0
  31. Gibbons, B. H. and J. T. Edsall (1963) Rate of hydration of carbon dioxide and dehydration of carbonic acid at 25 degrees. J. Biol. Chem. 238: 3502-3507.
  32. Bergmann, F., S. Rimon, and R. Segal (1958) Effect of pH on the activity of eel esterase towards different substrates. J. Biochem. 68: 493-499. https://doi.org/10.1042/bj0680493
  33. Wilbur, K. M. and N. G. Anderson (1948) Electrometric and colorimetric and determination of carbonic anhydrase. J. Biol. Chem. 176: 147-154.
  34. McKinlay, J. B., J. G. Zeikus, and C. Vieille (2005) Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl. Environ. Microbiol. 71: 6651- 6656. https://doi.org/10.1128/AEM.71.11.6651-6656.2005
  35. Song, H. and S. Y. Lee (2006) Production of succinic acid by bacterial fermentation. Enzyme Microb. Technol. 39: 352-361. https://doi.org/10.1016/j.enzmictec.2005.11.043
  36. So, A. K. C. and G. S. Espie (1998) Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC 6803. Plant Mol. Biol. 37: 205-215. https://doi.org/10.1023/A:1005959200390
  37. Schmetterer, G. (1994) Cyanobacterial respiration. In The molecular biology of cyanobacteria. Springer Netherlands. The Mol. Biol. of Cyanobacteria 1: 409-435.
  38. Kupriyanova, E. V., M. A. Sinetova, A. G. Markelova, S. I. Allakhverdiev, D. A. Los, and N. A. Pronina (2011) Extracellular $\beta$-class carbonic anhydrase of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. J. Photochem. Photobiol. 103: 78-86. https://doi.org/10.1016/j.jphotobiol.2011.01.021