DOI QR코드

DOI QR Code

중금속 내성이 있는 Desulfovibrio desulfuricans를 이용한 해양 환경에서의 Cu(II), Zn(II) 제거

Removal of Cupper(II), Zinc(II) in Marine Environment by Heavy Metal Resistant Desulfovibrio desulfuricans

  • 주정옥 (서강대학교 바이오융합기술) ;
  • 김인화 (서강대학교 화공생명공학과) ;
  • 오병근 (서강대학교 바이오융합기술)
  • Joo, Jeong Ock (Interdisciplinary Program of Intergrated Biotechnologyk Sogang University) ;
  • Kim, In Hwa (Department of Chemical & Biomolecular Engineering, Sogang University) ;
  • Oh, Byung-Keun (Interdisciplinary Program of Intergrated Biotechnologyk Sogang University)
  • 투고 : 2014.05.20
  • 심사 : 2014.06.05
  • 발행 : 2014.06.30

초록

Microorganisms play a significant role in bioremediation of heavy metal contaminated seawater. In this study, we reported an effective removal of Cu and Zn in marine envionment by using Desulfovibrio desulfuricans (D. desulfuricans) which belong to sulfate reducing bacteria. D. desulfuricans showed stable growth characteristics in high salt concentration and had resistance to heavy metals. Cu and Zn was removed not only by physical adsorption on the surface of bacteria but also by precipitation reaction of microbial metabolism by D. desulfuricans in seawater. In case of different heavy metal concentration, Cu was effectively removed 85% at 25 ppm and 60% at 50 ppm and Zn was effectively removed 54% at 50 ppm and 46% at 200 ppm, respectively.

키워드

참고문헌

  1. Luo, L., C. Ke, X. Guo, B. Shi, and M. Huang (2014) Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal contaminated estuary. Fish Shellfish Immunol. 38: 318-329. https://doi.org/10.1016/j.fsi.2014.03.029
  2. Zhao, S., C. Feng, W. Quan, X. Chen, J. Niu, and Z. Shen (2012) Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary. China Mar. Pollut. Bull. 64: 1163-1171. https://doi.org/10.1016/j.marpolbul.2012.03.023
  3. Bilal, M., J. A. Shah, T. Ashfaq, S. M. H. Gardazi, A. A. Tahir, A. Pervez, H. Haroon, and Q. Mahmood (2013) Waste biomass adsorbents for copper removal from industrial wastewater - A review. J. Hazard. Mater. 263: 322-333. https://doi.org/10.1016/j.jhazmat.2013.07.071
  4. Sen, S. K., S. Rauta, T. K. Dora, and P. K. D. Mohapatrab (2014) Contribution of hot spring bacterial consortium in cadmium and lead leadbioremediation through quadratic programming model. J. Hazard. Mater. 265: 47-60. https://doi.org/10.1016/j.jhazmat.2013.11.036
  5. Peng, S., H. Meng, Y. Ouyang, and J. Chang (2014) Nanoporous magnetic cellulose-chitosan composite microspheres: Preparation, characterization, and application for Cu(II) adsorption. Ind. Eng. Chem. Res. 53: 2106-2113. https://doi.org/10.1021/ie402855t
  6. Shah, B. A., C. B. Mistry, and A. V. Shah (2013) Sequestration of Cu(II) and Ni(II) from wastewater by synthesized zeolitic materials: Equilibrium, kinetics and column dynamics. Chem. Eng. J. 220: 172-184. https://doi.org/10.1016/j.cej.2013.01.056
  7. Yurkova, I. L., J. Arnholdb, G. Fitzl, and D. Huster (2011) Fragmentation of mitochondrial cardiolipin by copper ions in the Atp 7b-/- mouse model of Wilson's disease. Chem. Phys. Lipids. 163: 393-400.
  8. Hureau, C. and P. Faller (2009) $A\beta$-mediated ROS production by Cu ions: Structural insights, mechanisms and relevance to Alzheimer's disease. Biochimie. 91: 1212-1217. https://doi.org/10.1016/j.biochi.2009.03.013
  9. Muyzer, G. and A. J. M. Stams (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6: 441-454.
  10. Jong, T. and D. L. Parry (2004) Adsorption of Pb(II), Cu(II), Cd (II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides. J. Colloid Interface Sci. 275: 61-71. https://doi.org/10.1016/j.jcis.2004.01.046
  11. Ghosh, A. and P. D. Saha (2013) Optimization of copper bioremediation by Stenotrophomonas maltophilia PD2. J. Environ. Chem. Eng. 1: 159-163. https://doi.org/10.1016/j.jece.2013.04.012
  12. Wang, J. and C. Chen (2009) Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27: 195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002
  13. Priyadarshani, I., D. Sahu, and B. Rath (2011) Microalgal bioremediation: Current practices and perspectives. J. Biochem. Tech. 3: 299-304.
  14. Kim, S. J., K. W. Park, and B. K. Hur (2000) Characteristics of Linoleic Acid Production by Marine Fungi In Sea Water Media. Korean J. Biotechnol. Bioeng. 15: 195-200.
  15. Zhou, A., E. Baidoo, Z. He1, A. Mukhopadhyay, J. K. Baumohl, P. Benke, M. P. Joachimiak, M. Xie, R. Song, A. P. Arkin, T. C. Hazen, J. D. Keasling, J. D. Wall, D. A. Stahl, and J. Zhou1 (2013) Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution. ISME J. 7: 1790-1802. https://doi.org/10.1038/ismej.2013.60
  16. Sinbuathong, N., P. Sirirote, D. Watts, and S. Chulalaksananukul (2013) Heavy metal resistant anaerobic bacterial strains from brewery digester sludge. Int. J. Global Warming 5: 127-134. https://doi.org/10.1504/IJGW.2013.053494
  17. Karnachuk, O. V., S. Y. Kurochkina, D. Nicomrat, Y. A. Frank, D. A. Ivasenko, E. A. Phyllipenko, and O. H. Tuovinen (2003) Copper resistance in Desulfovibrio strain R2. Antonie van Leeuwenhoek. 83: 99-106. https://doi.org/10.1023/A:1022947302637
  18. Sulaiman, A. Z., H. E. N. Muftah, and A. H. A. Huda (2008) Sulfate inhibition effect on sulfate reducing bacteria. J. Biochem. Tech. 1: 39-44.
  19. Krystyna, K. and M. Tadeusz (2012) Precipitation of heavy metals from industrial wastewater by desulfovibrio desulfuricans. Environ. Prot. Eng. 38: 51-60.
  20. Jalali, K. and S. A. Baldwin (2000) The role of sulphate reducing bacteria in copper removal from aqueous sulphate solutions. Wat. Res. 34: 797-806. https://doi.org/10.1016/S0043-1354(99)00194-3
  21. Azabou, S., T. Mechichi, and S. Sayadi (2007) Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source. Miner. Eng. 20: 173-178. https://doi.org/10.1016/j.mineng.2006.08.008