DOI QR코드

DOI QR Code

Fumed Silica/Ceramic Wool 무기복합재의 제조 및 열적 성질

Fabrication and Thermal Properties of Fumed Silica/Ceramic Wool Inorganic Composites

  • 안원술 (계명대학교 화학공학과)
  • Ahn, WonSool (Department of Chemical Engineering, Keimyung University)
  • 투고 : 2014.02.18
  • 심사 : 2014.06.12
  • 발행 : 2014.06.30

초록

Fumed Silica와 섬유상의 Ceramic Wool을 사용하여 경량의 무기복합재 샘플을 제조하기 위한 조건과 만들어진 샘플의 단열특성을 살펴보았다. 정량된 Fumed Silica 미세분말과 Ceramic Wool을 혼합한 반죽을 몰드에 넣고 상온에서 안정화시킨 후에 $150^{\circ}C$ 오븐에서 완전히 건조하여 샘플을 제작하였다. 소량의 PVA 계면접착제를 사용하지 않는 샘플에서는 Fumed Silica 조성비가 10-70wt% 사이에서 벌크밀도가 0.6-0.8 $g/cm^3$이었으며, 50wt% 이상의 샘플에서는 건조 수축으로 인한 크랙현상이 관찰되었다. 그러나 3wt%의 PVA를 사용한 샘플의 벌크밀도는 절반 정도로 크게 감소하면서도 기계적 특성과 단열성은 향상되었다. 만들어진 샘플들은 $800^{\circ}C$ 이상의 고온에서도 열크랙 없이 안정한 열적 특성을 보여주었으며, 샘플의 단열성은 Fumed Silica 조성비가 높아질수록 향상되는 것으로 나타났다. Fumed Silica 30wt%인 샘플의 열전도도는 $500^{\circ}C$에서 약 0.08 $W/m^{\circ}K$의 우수한 단열 특성을 보여 주었다.

This study examined the fabrication and thermal properties of fumed silica/ceramic wool inorganic composites. A predetermined quantity of fumed silica and ceramic wool was mixed uniformly into a slurry state and stabilized in the mold at room temperature, and converted to a massive foamed body through a complete drying process at $150^{\circ}C$. Although the samples without polyvinyl alcohol (PVA) as an interfacial adhesive showed a bulk density of 0.6-0.8 $g/cm^3$ in the range, 10-70wt% fumed silica, those samples with 3wt% PVA exhibited remarkably lower bulk densities with enhanced mechanical and thermal insulation properties, without thermal cracking even above $800^{\circ}C$. The K-factor of the samples was lower in proportion to the fumed silica contents, showing good thermal insulation properties of ca. 0.08 $W/m^{\circ}K$ at $500^{\circ}C$ for the sample with 30wt% fumed silica.

키워드

참고문헌

  1. B. ClauB, "Fibers for Ceramic Matrix Composites", Ceramic Matrix Composites, ed. W. Krenkel, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp.1-20, 2008.
  2. A. Berge and P. JohanBon, "Literature Review of High Performance Thermal Insulation", Chalmers Civil and Environmental Engineering, Report 2012:2.
  3. X. Yibin, Yoshihisa, G. Hongbo, Y. Masayoshi, "Prediction of thermal conductivity of composite materials", Power and Energy Systems, 2, pp.1048-1059, 2008. https://doi.org/10.1299/jpes.2.1048
  4. W. Krenkel,R. Naslain, and H. Schneider, High Temperature CeramicMatrix Composites, Wiley - VCH Verlag GmbH,Weinheim, 2001.
  5. B. ClauB and D. Schawaller, "Modern Aspects of Ceramic Fiber Development", Advances in Science and Technology, 50, pp. 1-8, 2006. DOI: http://dx.doi.org/10.4028/www.scientific.net/AST.50.1
  6. M. A. Kumar, G. R. Reddy, V. P.Chandrakar, "Hydrophilic fumed silica/clay nanocomposites: Effect of silica/clay on performance", International Journal of Nanomaterials and Biostructures, 1(1), pp. 1-11, 2011. DOI: http://dx.doi.org/10.1155/2011/189731
  7. Y. Zheng, Y. Zheng, R. Ning, "Effects of nanoparticle SiO2 on the performance of nanocomposites, Mater. Lett., 57, pp. 2940-2944, 2003. DOI: http://dx.doi.org/10.1016/S0167-577X(02)01401-5
  8. M. H. G. Wichmann, M. Cascione, B. Fiedler, M. Quaresimin, K. Schulte, "Influence of Surface treatment on mechanical behaviour of fumed silica/epoxy nanocomposites", Comp. Interf., 13, pp. 699-715, 2006. DOI: http://dx.doi.org/10.1163/156855406779366723
  9. M. A. Kumar, K. H. Reddy, Y. V. M. Reddy, G. R. Reddy, N. S. V. Kumar, and B. H. N. Reddy, "ABeBment of nanoclay filled epoxy on mechanical, thermal and chemical resistance properties of nanocomposites", J. Metal. Mater. Sci., 52, pp. 305-315, 2010.
  10. C.-T. Lee, M. Jang, and T-M. Park, "A Foamed Body through the Complexation with the Sepiolite and Expanded Pearlite", Appl. Chem. Eng., 23(1), pp. 77-85, 2012.
  11. Morgan ThermalCeramics, www.morganthermalceramics.com
  12. DeguBa, Technical information, No.1271

피인용 문헌

  1. Effects of SiC Particle Size and Inorganic Binder on Heat Insulation of Fumed Silica-based Heat Insulation Plates vol.53, pp.4, 2016, https://doi.org/10.4191/kcers.2016.53.4.386