DOI QR코드

DOI QR Code

Numerical Study of Drag Forces Acting on a Submerged Square Cylinder in Steady Flow Condition

정상류 수몰 사각실린더에 작용하는 항력 특성에 관한 수치모의 연구

  • Lee, Du Han (River and Coastal Research Division, Korea Institute of Construction Technology) ;
  • Kim, Young Joo (River and Coastal Research Division, Korea Institute of Construction Technology) ;
  • Rhee, Dong Sop (River and Coastal Research Division, Korea Institute of Construction Technology)
  • 이두한 (한국건설기술연구원 하천해안연구실) ;
  • 김영주 (한국건설기술연구원 하천해안연구실) ;
  • 이동섭 (한국건설기술연구원 하천해안연구실)
  • Received : 2013.12.04
  • Accepted : 2014.06.12
  • Published : 2014.06.30

Abstract

In this study, the drag forces on a submerged square cylinder were analyzed using a three dimensional hydrodynamic model. The numerical results were compared with the experimental results to check the reliability of the numerical simulations, and the characteristics of the drag forces with the relative depths were analyzed by analyzing the pressure acting on the cylinder surface, which are normally difficult to measure experimentally. The numerical results showed that the drag forces acting on a submerged square cylinder originate mainly from the pressure forces, and component of the shear forces decreased with increasing relative depth. The pressure coefficient distributions showed that in the case of a low relative depth, a relatively high pressure was formed in the front of a cylinder, and a relatively low pressure was formed in the rear, which gives a high drag coefficient. In a high relative depth, the pressure in the front decreased and pressure in the rear increased, which is a similar phenomenon to that normally observed in two dimensional square cylinder flow. The effect of the static pressure was analyzed and the surface elevation difference between the front and rear zone of a cylinder has a limited effect on the drag forces. Finally, the numerical results showed that the drag forces acting on a submerged square are dominated by the dynamic pressure formed by three dimensional flow and the distribution of local surface elevation.

본 연구에서는 수치모의를 통해서 월류 흐름이 존재하는 수몰 사각 실린더의 항력 특성에 대하여 분석하였다. 모의의 신뢰성을 검토하기 위하여 실험자료와 비교하였으며 실험에서 측정하기 어려운 실린더 접촉면의 압력에 대한 분석을 통해서 상대 수심에 따른 항력의 특성을 분석하였다. 3차원 동수역학 모형을 이용한 수몰 사각 실린더의 항력 계산 결과는 실험자료의 상대 수심의 변화에 따른 항력계수의 변화를 유사하게 모의하고 있음을 확인할 수 있었다. 수치모의 결과 분석에 의하면 수몰 사각 실린더에 작용하는 항력은 대부분 압력이며 상대 수심이 증가함에 따라 전단력의 비중은 감소하였다. 실린더 접촉면의 압력계수 분석 결과에 의하면 상대 수심이 낮은 경우에는 전면부에 높은 압력계수가 형성되고 후면부에 낮은 압력계수가 형성되어 결과적으로 높은 항력계수가 나타남을 확인하였다. 상대수심이 증가하면 전면부의 압력계수는 감소하고 후면부의 압력계수는 증가하여 2차원 흐름 내의 사각 실린더와 유사한 양상을 나타낸다. 정수압 영향 분석에 의하면 전면부와 후면부의 수위 차에 의한 정수압은 항력에 미치는 영향이 제한적이며 사각 실린더에 의해 형성되는 국부적인 수위와 함께 3차원적인 흐름에 의해 형성되는 동수압의 영향이 크다는 것을 확인하였다.

Keywords

References

  1. Chow, V.T., "Open-Channel Hydraulics", McGraw-Hill Civil Enginering Series, New York, N.Y., 1956.
  2. Cowan, W.L., "Estimating hydraulics roughness coefficients", Agricultural Engineering, Vol. 37, No. 7, pp. 473-475, 1956.
  3. Hoerner, S.F., "Fluid dynamic drag", 1968.
  4. Kim, Ji Sung, Dong Kyun Im, Won Kim, "The study on drag coefficient characteristics of obstaches in open channel", Proceedings of the Korea Water Resources Association Conference, pp. 1894-1899, 2008.
  5. Rhee, Dong Sop and Lee, Du Han, "Variation of the drag force acting on vegetation model elements", Proceedings of the Korea Water Resources Association Conference, pp. 665. 2012.
  6. Shohei, A., "On the artificial strip roughness", Disaster prevention research institute, Kyoto university, Kyoto, Japan. Vol. 69, pp. 1-20, 1964.
  7. Mirei, S.E., Juichiro, A., Masayuki, N. and Takanori, A., "Hydrodynamic forces acting on a submerged obstruction in steady free surface flows [in Japanese]", Vol. 48, pp.877-882, 2004.
  8. Juichiro, A., Mirei, S.D., Toshihiko, K. and Kazumasa, O., "Hydrodynamic force exerting on a square pillar in steady free surface shear flows[in Japanese]", Vol. 46, pp.827-832, 2002.
  9. Tatsuhiko, U., Shoji, F., Takuji, F. and Masatoshi T., "Two-dimensional shallow water analysis over large roughness elements and its application [in Japanese]", Proceedings of JSCE 691, pp.93-103, 2001.
  10. Hirt, C.W. and Nichols, B.D., "Volume of fluid (VOF) method for the dynamics of free boundaries", J. Comput. Phys., Vol. 39, No. 1, pp. 201-225, 1981. DOI: http://dx.doi.org/10.1016/0021-9991(81)90145-5
  11. Yakhot, V. and Orszag, S.A., "Renormalization group analysis of turbulence 1. Basic theory", J. Sci. Comput., Vol. 1, No. 1, pp. 3-51, 1986. DOI: http://dx.doi.org/10.1007/BF01061452
  12. X. Shen, S. L. Ceccio, and M. Perlin, "Influence of bubble size on micro-bubble drag reduction," Experiments in Fluids, vol. 41, no. 3, pp. 415-424, 2006. DOI: http://dx.doi.org/10.1007/s00348-006-0169-y
  13. Ortiz-Villafuerte and Y. A. Hassan, "Investigation of microbubble boundary layer using particle tracking velocimetry," Journal of Fluids Engineering, vol. 128, no. 3, pp. 507-519, 2006. DOI: http://dx.doi.org/10.1115/1.2174062