References
- Choi, Y., Park, H.Y., Park, S.J., Kim, S.K., Ha, C., Im, S.J., and Lee, J.H. (2011). Growth phase-differential quorum sensing regulation of anthranilate metabolism in Pseudomonas aeruginosa. Mol. Cells 32, 57-65. https://doi.org/10.1007/s10059-011-2322-6
- Chugani, S.A., Whiteley, M., Lee, K.M., D'Argenio, D., Manoil, C., and Greenberg, E.P. (2001). QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98, 2752-2757. https://doi.org/10.1073/pnas.051624298
- Engel, L.S., Hill, J.M., Moreau, J.M., Green, L.C., Hobden, J.A., and O'Callaghan, R.J. (1998). Pseudomonas aeruginosa protease IV produces corneal damage and contributes to bacterial virulence. Invest. Ophthalmol. Vis. Sci. 39, 662-665.
- Farinha, M.A., and Kropinski, A.M. (1990). Construction of broad-host- range plasmid vectors for easy visible selection and analysis of promoters. J. Bacteriol. 172, 3496-3499.
- Fuqua, C., and Greenberg, E.P. (2002). Listening in on bacteria: acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3, 685-695. https://doi.org/10.1038/nrm907
- Ha, C., Park, S.J., Im, S.J., and Lee, J.H. (2012). Interspecies signaling through QscR, a quorum receptor of Pseudomonas aeruginosa. Mol. Cells 33, 53-59. https://doi.org/10.1007/s10059-012-2208-2
- Hancock, R.E., and Speert, D.P. (2000). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist. updat. 3, 247-255. https://doi.org/10.1054/drup.2000.0152
- Hardalo, C., and Edberg, S.C. (1997). Pseudomonas aeruginosa: assessment of risk from drinking water. Crit. Rev. Microbiol. 23, 47-75. https://doi.org/10.3109/10408419709115130
- Hastings, J.W., and Greenberg, E.P. (1999). Quorum sensing: the explanation of a curious phenomenon reveals a common characteristic of bacteria. J. Bacteriol. 181, 2667-2668.
- Keren, I., Wu, Y., Inocencio, J., Mulcahy, L.R., and Lewis, K. (2013). Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339, 1213-1216. https://doi.org/10.1126/science.1232688
- Kim, S.K., Im, S.J., Yeom, D.H., and Lee, J.H. (2012). AntR-mediated bidirectional activation of antA and antR, anthranilate degradative genes in Pseudomonas aeruginosa. Gene 505, 146-152. https://doi.org/10.1016/j.gene.2012.05.004
- Kobayashi, K., and Tagawa, S. (2004). Activation of SoxR-dependent transcription in Pseudomonas aeruginosa. J. Biochem. 136, 607-615. https://doi.org/10.1093/jb/mvh168
- Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797-810. https://doi.org/10.1016/j.cell.2007.06.049
- Lambert, P.A. (2002). Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J. R. Soc. Med. 95 Suppl 41, 22-26.
- Lee, J.H., Lequette, Y., and Greenberg, E.P. (2006). Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol. Microbiol. 59, 602-609. https://doi.org/10.1111/j.1365-2958.2005.04960.x
- Lintz, M.J., Oinuma, K., Wysoczynski, C.L., Greenberg, E.P., and Churchill, M.E. (2011). Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc. Natl. Acad. Sci. USA 108, 15763-15768. https://doi.org/10.1073/pnas.1112398108
- Livermore, D.M. (2002). Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34, 634-640. https://doi.org/10.1086/338782
- Newman, J.R., and Fuqua, C. (1999). Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227, 197-203. https://doi.org/10.1016/S0378-1119(98)00601-5
- Oglesby, A.G., Farrow, J.M., 3rd, Lee, J.H., Tomaras, A.P., Greenberg, E.P., Pesci, E.C., and Vasil, M.L. (2008). The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J. Biol. Chem. 283, 15558-15567. https://doi.org/10.1074/jbc.M707840200
- Oinuma, K., and Greenberg, E.P. (2011). Acyl-homoserine lactone binding to and stability of the orphan Pseudomonas aeruginosa quorum-sensing signal receptor QscR. J. Bacteriol. 193, 421-428. https://doi.org/10.1128/JB.01041-10
- Palma, M., Zurita, J., Ferreras, J.A., Worgall, S., Larone, D.H., Shi, L., Campagne, F., and Quadri, L.E. (2005). Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Infect. Immun. 73, 2958-2966. https://doi.org/10.1128/IAI.73.5.2958-2966.2005
- Pankey, G.A., and Sabath, L.D. (2004). Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 38, 864-870. https://doi.org/10.1086/381972
- Park, S.J., Liu, H.B., Park, S., and Lee, J.H. (2013). Modulation of QscR, a quorum sensing receptor of Pseudomonas aeruginosa, by truncation of a signal binding domain. Res. Microbiol. 164, 375-381. https://doi.org/10.1016/j.resmic.2013.02.001
- Pearson, J.P., Pesci, E.C., and Iglewski, B.H. (1997). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179, 5756-5767.
- Schuster, M., and Greenberg, E.P. (2006). A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296, 73-81. https://doi.org/10.1016/j.ijmm.2006.01.036
- Schuster, M., Urbanowski, M.L., and Greenberg, E.P. (2004). Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc. Natl. Acad. Sci. USA 101, 15833-15839. https://doi.org/10.1073/pnas.0407229101
- Wright, G.D. (2007). On the road to bacterial cell death. Cell 130, 781-783. https://doi.org/10.1016/j.cell.2007.08.023
- Yeom, D.H., Kim, S.K., Lee, M.N., and Lee, J.H. (2013). Pleiotropic effects of acyltransferases on various virulence-related phenotypes of Pseudomonas aeruginosa. Genes Cells 18, 682-693. https://doi.org/10.1111/gtc.12076
Cited by
- A Burkholderia thailandensis Acyl-Homoserine Lactone-Independent Orphan LuxR Homolog That Activates Production of the Cytotoxin Malleilactone vol.197, pp.21, 2014, https://doi.org/10.1128/jb.00425-15