DOI QR코드

DOI QR Code

Activation of Multiple Transcriptional Regulators by Growth Restriction in Pseudomonas aeruginosa

  • Yeom, Doo Hwan (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Im, Su-Jin (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Kim, Soo-Kyoung (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Lee, Joon-Hee (Department of Pharmacy, College of Pharmacy, Pusan National University)
  • Received : 2014.04.28
  • Accepted : 2014.05.23
  • Published : 2014.06.30

Abstract

Growth restriction by antibiotics is a common feature that pathogenic bacteria must overcome for survival. The struggle of bacteria to escape from growth restriction eventually results in development of antibiotic-resistance through the expression of a set of genes. Here we found that some physiologically important transcriptional regulators of Pseudomonas aeruginosa including QscR, a quorum sensing (QS) receptor, SoxR, a superoxide sensor-regulator, and AntR, a regulator of anthranilate-related secondary metabolism, are activated by various growth-restricted conditions. We generated the growth-restricted conditions by various methods, such as overexpression of PA2537 and treatment with antibiotics or disinfectants. The overexpression of PA2537, encoding an acyltransferase homologue, tightly restricted the growth of P. aeruginosa and significantly activated QscR during the growth restriction. Similarly, treatments with gentamycin, tetracycline, and ethanol also activated QscR near their minimal inhibitory concentrations (MICs). Some non-QS regulators, such as AntR and SoxR, were also activated near the MICs in the same conditions. However, LasR and PqsR, other QS receptors of P. aeruginosa, were not activated, suggesting that only a specific set of transcriptional regulators is activated by growth restriction. Since paraquat, a superoxide generator, significantly activated QscR and AntR, we suggest that the oxidative stress generated by growth restriction may be partly involved in this phenomenon.

Keywords

References

  1. Choi, Y., Park, H.Y., Park, S.J., Kim, S.K., Ha, C., Im, S.J., and Lee, J.H. (2011). Growth phase-differential quorum sensing regulation of anthranilate metabolism in Pseudomonas aeruginosa. Mol. Cells 32, 57-65. https://doi.org/10.1007/s10059-011-2322-6
  2. Chugani, S.A., Whiteley, M., Lee, K.M., D'Argenio, D., Manoil, C., and Greenberg, E.P. (2001). QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98, 2752-2757. https://doi.org/10.1073/pnas.051624298
  3. Engel, L.S., Hill, J.M., Moreau, J.M., Green, L.C., Hobden, J.A., and O'Callaghan, R.J. (1998). Pseudomonas aeruginosa protease IV produces corneal damage and contributes to bacterial virulence. Invest. Ophthalmol. Vis. Sci. 39, 662-665.
  4. Farinha, M.A., and Kropinski, A.M. (1990). Construction of broad-host- range plasmid vectors for easy visible selection and analysis of promoters. J. Bacteriol. 172, 3496-3499.
  5. Fuqua, C., and Greenberg, E.P. (2002). Listening in on bacteria: acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3, 685-695. https://doi.org/10.1038/nrm907
  6. Ha, C., Park, S.J., Im, S.J., and Lee, J.H. (2012). Interspecies signaling through QscR, a quorum receptor of Pseudomonas aeruginosa. Mol. Cells 33, 53-59. https://doi.org/10.1007/s10059-012-2208-2
  7. Hancock, R.E., and Speert, D.P. (2000). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist. updat. 3, 247-255. https://doi.org/10.1054/drup.2000.0152
  8. Hardalo, C., and Edberg, S.C. (1997). Pseudomonas aeruginosa: assessment of risk from drinking water. Crit. Rev. Microbiol. 23, 47-75. https://doi.org/10.3109/10408419709115130
  9. Hastings, J.W., and Greenberg, E.P. (1999). Quorum sensing: the explanation of a curious phenomenon reveals a common characteristic of bacteria. J. Bacteriol. 181, 2667-2668.
  10. Keren, I., Wu, Y., Inocencio, J., Mulcahy, L.R., and Lewis, K. (2013). Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339, 1213-1216. https://doi.org/10.1126/science.1232688
  11. Kim, S.K., Im, S.J., Yeom, D.H., and Lee, J.H. (2012). AntR-mediated bidirectional activation of antA and antR, anthranilate degradative genes in Pseudomonas aeruginosa. Gene 505, 146-152. https://doi.org/10.1016/j.gene.2012.05.004
  12. Kobayashi, K., and Tagawa, S. (2004). Activation of SoxR-dependent transcription in Pseudomonas aeruginosa. J. Biochem. 136, 607-615. https://doi.org/10.1093/jb/mvh168
  13. Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797-810. https://doi.org/10.1016/j.cell.2007.06.049
  14. Lambert, P.A. (2002). Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J. R. Soc. Med. 95 Suppl 41, 22-26.
  15. Lee, J.H., Lequette, Y., and Greenberg, E.P. (2006). Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol. Microbiol. 59, 602-609. https://doi.org/10.1111/j.1365-2958.2005.04960.x
  16. Lintz, M.J., Oinuma, K., Wysoczynski, C.L., Greenberg, E.P., and Churchill, M.E. (2011). Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc. Natl. Acad. Sci. USA 108, 15763-15768. https://doi.org/10.1073/pnas.1112398108
  17. Livermore, D.M. (2002). Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34, 634-640. https://doi.org/10.1086/338782
  18. Newman, J.R., and Fuqua, C. (1999). Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227, 197-203. https://doi.org/10.1016/S0378-1119(98)00601-5
  19. Oglesby, A.G., Farrow, J.M., 3rd, Lee, J.H., Tomaras, A.P., Greenberg, E.P., Pesci, E.C., and Vasil, M.L. (2008). The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J. Biol. Chem. 283, 15558-15567. https://doi.org/10.1074/jbc.M707840200
  20. Oinuma, K., and Greenberg, E.P. (2011). Acyl-homoserine lactone binding to and stability of the orphan Pseudomonas aeruginosa quorum-sensing signal receptor QscR. J. Bacteriol. 193, 421-428. https://doi.org/10.1128/JB.01041-10
  21. Palma, M., Zurita, J., Ferreras, J.A., Worgall, S., Larone, D.H., Shi, L., Campagne, F., and Quadri, L.E. (2005). Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Infect. Immun. 73, 2958-2966. https://doi.org/10.1128/IAI.73.5.2958-2966.2005
  22. Pankey, G.A., and Sabath, L.D. (2004). Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 38, 864-870. https://doi.org/10.1086/381972
  23. Park, S.J., Liu, H.B., Park, S., and Lee, J.H. (2013). Modulation of QscR, a quorum sensing receptor of Pseudomonas aeruginosa, by truncation of a signal binding domain. Res. Microbiol. 164, 375-381. https://doi.org/10.1016/j.resmic.2013.02.001
  24. Pearson, J.P., Pesci, E.C., and Iglewski, B.H. (1997). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179, 5756-5767.
  25. Schuster, M., and Greenberg, E.P. (2006). A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296, 73-81. https://doi.org/10.1016/j.ijmm.2006.01.036
  26. Schuster, M., Urbanowski, M.L., and Greenberg, E.P. (2004). Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc. Natl. Acad. Sci. USA 101, 15833-15839. https://doi.org/10.1073/pnas.0407229101
  27. Wright, G.D. (2007). On the road to bacterial cell death. Cell 130, 781-783. https://doi.org/10.1016/j.cell.2007.08.023
  28. Yeom, D.H., Kim, S.K., Lee, M.N., and Lee, J.H. (2013). Pleiotropic effects of acyltransferases on various virulence-related phenotypes of Pseudomonas aeruginosa. Genes Cells 18, 682-693. https://doi.org/10.1111/gtc.12076

Cited by

  1. A Burkholderia thailandensis Acyl-Homoserine Lactone-Independent Orphan LuxR Homolog That Activates Production of the Cytotoxin Malleilactone vol.197, pp.21, 2014, https://doi.org/10.1128/jb.00425-15