DOI QR코드

DOI QR Code

A Novel Feeder-Free Culture System for Expansion of Mouse Spermatogonial Stem Cells

  • Choi, Na Young (Department of Stem Cell Biology, School of Medicine, Konkuk University) ;
  • Park, Yo Seph (Department of Stem Cell Biology, School of Medicine, Konkuk University) ;
  • Ryu, Jae-Sung (Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University) ;
  • Lee, Hye Jeong (Department of Stem Cell Biology, School of Medicine, Konkuk University) ;
  • Arauzo-Bravo, Marcos J. (Group of Computational Biology and Bioinformatics, Biodonostia Health Research Institute) ;
  • Ko, Kisung (Department of Medicine, Medical Research Institute, College of Medicine, Chung-Ang University) ;
  • Han, Dong Wook (Department of Stem Cell Biology, School of Medicine, Konkuk University) ;
  • Scholer, Hans R. (Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine) ;
  • Ko, Kinarm (Department of Stem Cell Biology, School of Medicine, Konkuk University)
  • Received : 2014.04.04
  • Accepted : 2014.04.28
  • Published : 2014.06.30

Abstract

Spermatogonial stem cells (SSCs, also called germline stem cells) are self-renewing unipotent stem cells that produce differentiating germ cells in the testis. SSCs can be isolated from the testis and cultured in vitro for long-term periods in the presence of feeder cells (often mouse embryonic fibroblasts). However, the maintenance of SSC feeder culture systems is tedious because preparation of feeder cells is needed at each subculture. In this study, we developed a Matrigel-based feeder-free culture system for long-term propagation of SSCs. Although several in vitro SSC culture systems without feeder cells have been previously described, our Matrigel-based feeder-free culture system is time- and cost-effective, and preserves self-renewability of SSCs. In addition, the growth rate of SSCs cultured using our newly developed system is equivalent to that in feeder cultures. We confirmed that the feeder-free cultured SSCs expressed germ cell markers both at the mRNA and protein levels. Furthermore, the functionality of feeder-free cultured SSCs was confirmed by their transplantation into germ cell-depleted mice. These results suggest that our newly developed feeder-free culture system provides a simple approach to maintaining SSCs in vitro and studying the basic biology of SSCs, including determination of their fate.

Keywords

References

  1. Bodnar, M.S., Meneses, J.J., Rodriguez, R.T., and Firpo, M.T. (2004). Propagation and maintenance of undifferentiated human embryonic stem cells. Stem Cells Dev. 13, 243-253. https://doi.org/10.1089/154732804323099172
  2. Braam, S.R., Zeinstra, L., Litjens, S., Ward-van Oostwaard, D., van den Brink, S., van Laake, L., Lebrin, F., Kats, P., Hochstenbach, R., Passier, R., et al. (2008). Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26, 2257-2265. https://doi.org/10.1634/stemcells.2008-0291
  3. Brinster, R.L., and Zimmermann, J.W. (1994). Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA 91, 11298-11302. https://doi.org/10.1073/pnas.91.24.11298
  4. Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., Miki, H., Ogura, A., Toyokuni, S., and Shinohara, T. (2003). Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69, 612-616. https://doi.org/10.1095/biolreprod.103.017012
  5. Kanatsu-Shinohara, M., Miki, H., Inoue, K., Ogonuki, N., Toyokuni, S., Ogura, A., and Shinohara, T. (2005). Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol. Reprod. 72, 985-991. https://doi.org/10.1095/biolreprod.104.036400
  6. Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., Morimoto, H., Ogura, A., and Shinohara, T. (2011). Serum- and feeder-free culture of mouse germline stem cells. Biol. Reprod. 84, 97-105. https://doi.org/10.1095/biolreprod.110.086462
  7. Ko, K., Tapia, N., Wu, G., Kim, J.B., Bravo, M.J., Sasse, P., Glaser, T., Ruau, D., Han, D.W., Greber, B., et al. (2009). Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5, 87-96. https://doi.org/10.1016/j.stem.2009.05.025
  8. Ko, K., Arauzo-Bravo, M.J., Kim, J., Stehling, M., and Scholer, H.R. (2010). Conversion of adult mouse unipotent germline stem cells into pluripotent stem cells. Nat. Protoc. 5, 921-928. https://doi.org/10.1038/nprot.2010.44
  9. Ko, K., Wu, G., Arauzo-Bravo, M.J., Kim, J., Francine, J., Greber, B., Muhlisch, J., Joo, J.Y., Sabour, D., Fruhwald, M.C., et al. (2012). Autologous pluripotent stem cells generated from adult mouse testicular biopsy. Stem Cell Rev. 8, 435-444. https://doi.org/10.1007/s12015-011-9307-x
  10. Kubota, H., Avarbock, M.R., and Brinster, R.L. (2004). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 101, 16489-16494. https://doi.org/10.1073/pnas.0407063101
  11. Mallon, B.S., Park, K.Y., Chen, K.G., Hamilton, R.S., and McKay, R.D. (2006). Toward xeno-free culture of human embryonic stem cells. Int. J. Biochem. Cell Biol. 38, 1063-1075. https://doi.org/10.1016/j.biocel.2005.12.014
  12. Matsui, Y., Zsebo, K., and Hogan, B.L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841-847. https://doi.org/10.1016/0092-8674(92)90317-6
  13. Meng, X., Lindahl, M., Hyvonen, M.E., Parvinen, M., de Rooij, D.G., Hess, M.W., Raatikainen-Ahokas, A., Sainio, K., Rauvala, H., Lakso, M., et al. (2000). Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489-1493. https://doi.org/10.1126/science.287.5457.1489
  14. Mittal, N., and Voldman, J. (2011). Nonmitogenic survival-enhancing autocrine factors including cyclophilin A contribute to density-dependent mouse embryonic stem cell growth. Stem Cell. Res. 6, 168-176. https://doi.org/10.1016/j.scr.2010.10.001
  15. Nagano, M., Avarbock, M.R., Leonida, E.B., Brinster, C.J., and Brinster, R.L. (1998). Culture of mouse spermatogonial stem cells. Tissue Cell 30, 389-397. https://doi.org/10.1016/S0040-8166(98)80053-0
  16. Oatley, J.M., and Brinster, R.L. (2012). The germline stem cell niche unit in mammalian testes. Physiol. Rev. 92, 577-595. https://doi.org/10.1152/physrev.00025.2011
  17. Phillips, B.T., Gassei, K., and Orwig, K.E. (2010). Spermatogonial stem cell regulation and spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1663-1678. https://doi.org/10.1098/rstb.2010.0026
  18. Rastegar, T., Minaee, M.B., Habibi Roudkenar, M., Raghardi Kashani, I., Amidi, F., Abolhasani, F., and Barbarestani, M. (2013). Improvement of expression of alpha6 and beta1 Integrins by the co-culture of adult mouse spermatogonial stem cells with SIM mouse embryonic fibroblast cells (STO) and growth factors. Iran. J. Basic Med. Sci. 16, 134-139.
  19. Resnick, J.L., Bixler, L.S., Cheng, L., and Donovan, P.J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550-551. https://doi.org/10.1038/359550a0
  20. Ryu, B.Y., Kubota, H., Avarbock, M.R., and Brinster, R.L. (2005). Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc. Natl. Acad. Sci. USA 102, 14302-14307. https://doi.org/10.1073/pnas.0506970102
  21. Ryu, B.Y., Orwig, K.E., Oatley, J.M., Avarbock, M.R., and Brinster, R.L. (2006). Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 24, 1505-1511. https://doi.org/10.1634/stemcells.2005-0580
  22. Schlatt, S. (2002). Germ cell transplantation. Mol. Cell. Endocrinol. 186, 163-167. https://doi.org/10.1016/S0303-7207(01)00661-X
  23. Silvan, U., Diez-Torre, A., Moreno, P., Arluzea, J., Andrade, R., Silio, M., and Arechaga, J. (2013). The spermatogonial stem cell niche in testicular germ cell tumors. Int. J. Dev. Biol. 57, 185-195. https://doi.org/10.1387/ijdb.130068ja
  24. Spradling, A., Drummond-Barbosa, D., and Kai, T. (2001). Stem cells find their niche. Nature 414, 98-104. https://doi.org/10.1038/35102160
  25. Tang, L., Rodriguez-Sosa, J.R., and Dobrinski, I. (2012). Germ cell transplantation and testis tissue xenografting in mice. J. Vis. Exp. 6, pii: 3545.
  26. Tegelenbosch, R.A., and de Rooij, D.G. (1993). A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res. 290, 193-200. https://doi.org/10.1016/0027-5107(93)90159-D
  27. Vukicevic, S., Kleinman, H.K., Luyten, F.P., Roberts, A.B., Roche, N.S., and Reddi, A.H. (1992). Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202, 1-8. https://doi.org/10.1016/0014-4827(92)90397-Q

Cited by

  1. Biomodification of PCL Scaffolds with Matrigel, HA, and SR1 EnhancesDe NovoEctopic Bone Marrow Formation Induced by rhBMP-2 vol.4, pp.1, 2015, https://doi.org/10.1089/biores.2015.0020
  2. Human umbilical perivascular cells (HUCPVCs): a novel source of mesenchymal stromal-like (MSC) cells to support the regeneration of the testicular niche vol.153, pp.1, 2017, https://doi.org/10.1530/REP-16-0220
  3. Comparison between the cultures of human induced pluripotent stem cells (hiPSCs) on feeder-and serum-free system (Matrigel matrix), MEF and HDF feeder cell lines vol.9, pp.3, 2015, https://doi.org/10.1007/s12079-015-0289-3
  4. Development of a Test Method for the Evaluation of DNA Damage in Mouse Spermatogonial Stem Cells vol.33, pp.2, 2017, https://doi.org/10.5487/TR.2017.33.2.107
  5. Optimization of Matrigel-based culture for expansion of neural stem cells vol.19, pp.3, 2015, https://doi.org/10.1080/19768354.2015.1035750
  6. Expression of transcriptional factor EB (TFEB) in differentiating spermatogonia potentially promotes cell migration in mouse seminiferous epithelium vol.16, pp.1, 2018, https://doi.org/10.1186/s12958-018-0427-x
  7. Previously claimed male germline stem cells from porcine testis are actually progenitor Leydig cells vol.9, pp.1, 2018, https://doi.org/10.1186/s13287-018-0931-0
  8. Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells without Microenvironment of Feeder Cells vol.41, pp.7, 2014, https://doi.org/10.14348/molcells.2018.2294
  9. Reprogramming of spermatogonial stem cells into pluripotent stem cells in the spheroidal state vol.23, pp.6, 2014, https://doi.org/10.1080/19768354.2019.1672578
  10. 3D models in the new era of immune oncology: focus on T cells, CAF and ECM vol.38, pp.1, 2014, https://doi.org/10.1186/s13046-019-1086-2
  11. p53 inhibits the proliferation of male germline stem cells from dairy goat cultured on poly‐L‐lysine vol.55, pp.3, 2020, https://doi.org/10.1111/rda.13645
  12. Investigation of VASA Gene and Protein Expression in Neonate and Adult Testicular Germ Cells in Mice In Vivo and In Vitro vol.22, pp.2, 2014, https://doi.org/10.22074/cellj.2020.6619
  13. Pentoxifylline treatment of frozen pig sperm affects sperm motility and fetal numbers vol.47, pp.3, 2020, https://doi.org/10.7744/kjoas.20200053
  14. Cellular Therapy via Spermatogonial Stem Cells for Treating Impaired Spermatogenesis, Non-Obstructive Azoospermia vol.10, pp.7, 2014, https://doi.org/10.3390/cells10071779