References
- Bodnar, M.S., Meneses, J.J., Rodriguez, R.T., and Firpo, M.T. (2004). Propagation and maintenance of undifferentiated human embryonic stem cells. Stem Cells Dev. 13, 243-253. https://doi.org/10.1089/154732804323099172
- Braam, S.R., Zeinstra, L., Litjens, S., Ward-van Oostwaard, D., van den Brink, S., van Laake, L., Lebrin, F., Kats, P., Hochstenbach, R., Passier, R., et al. (2008). Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26, 2257-2265. https://doi.org/10.1634/stemcells.2008-0291
- Brinster, R.L., and Zimmermann, J.W. (1994). Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA 91, 11298-11302. https://doi.org/10.1073/pnas.91.24.11298
- Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., Miki, H., Ogura, A., Toyokuni, S., and Shinohara, T. (2003). Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69, 612-616. https://doi.org/10.1095/biolreprod.103.017012
- Kanatsu-Shinohara, M., Miki, H., Inoue, K., Ogonuki, N., Toyokuni, S., Ogura, A., and Shinohara, T. (2005). Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol. Reprod. 72, 985-991. https://doi.org/10.1095/biolreprod.104.036400
- Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., Morimoto, H., Ogura, A., and Shinohara, T. (2011). Serum- and feeder-free culture of mouse germline stem cells. Biol. Reprod. 84, 97-105. https://doi.org/10.1095/biolreprod.110.086462
- Ko, K., Tapia, N., Wu, G., Kim, J.B., Bravo, M.J., Sasse, P., Glaser, T., Ruau, D., Han, D.W., Greber, B., et al. (2009). Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5, 87-96. https://doi.org/10.1016/j.stem.2009.05.025
- Ko, K., Arauzo-Bravo, M.J., Kim, J., Stehling, M., and Scholer, H.R. (2010). Conversion of adult mouse unipotent germline stem cells into pluripotent stem cells. Nat. Protoc. 5, 921-928. https://doi.org/10.1038/nprot.2010.44
- Ko, K., Wu, G., Arauzo-Bravo, M.J., Kim, J., Francine, J., Greber, B., Muhlisch, J., Joo, J.Y., Sabour, D., Fruhwald, M.C., et al. (2012). Autologous pluripotent stem cells generated from adult mouse testicular biopsy. Stem Cell Rev. 8, 435-444. https://doi.org/10.1007/s12015-011-9307-x
- Kubota, H., Avarbock, M.R., and Brinster, R.L. (2004). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 101, 16489-16494. https://doi.org/10.1073/pnas.0407063101
- Mallon, B.S., Park, K.Y., Chen, K.G., Hamilton, R.S., and McKay, R.D. (2006). Toward xeno-free culture of human embryonic stem cells. Int. J. Biochem. Cell Biol. 38, 1063-1075. https://doi.org/10.1016/j.biocel.2005.12.014
- Matsui, Y., Zsebo, K., and Hogan, B.L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841-847. https://doi.org/10.1016/0092-8674(92)90317-6
- Meng, X., Lindahl, M., Hyvonen, M.E., Parvinen, M., de Rooij, D.G., Hess, M.W., Raatikainen-Ahokas, A., Sainio, K., Rauvala, H., Lakso, M., et al. (2000). Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489-1493. https://doi.org/10.1126/science.287.5457.1489
- Mittal, N., and Voldman, J. (2011). Nonmitogenic survival-enhancing autocrine factors including cyclophilin A contribute to density-dependent mouse embryonic stem cell growth. Stem Cell. Res. 6, 168-176. https://doi.org/10.1016/j.scr.2010.10.001
- Nagano, M., Avarbock, M.R., Leonida, E.B., Brinster, C.J., and Brinster, R.L. (1998). Culture of mouse spermatogonial stem cells. Tissue Cell 30, 389-397. https://doi.org/10.1016/S0040-8166(98)80053-0
- Oatley, J.M., and Brinster, R.L. (2012). The germline stem cell niche unit in mammalian testes. Physiol. Rev. 92, 577-595. https://doi.org/10.1152/physrev.00025.2011
- Phillips, B.T., Gassei, K., and Orwig, K.E. (2010). Spermatogonial stem cell regulation and spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1663-1678. https://doi.org/10.1098/rstb.2010.0026
- Rastegar, T., Minaee, M.B., Habibi Roudkenar, M., Raghardi Kashani, I., Amidi, F., Abolhasani, F., and Barbarestani, M. (2013). Improvement of expression of alpha6 and beta1 Integrins by the co-culture of adult mouse spermatogonial stem cells with SIM mouse embryonic fibroblast cells (STO) and growth factors. Iran. J. Basic Med. Sci. 16, 134-139.
- Resnick, J.L., Bixler, L.S., Cheng, L., and Donovan, P.J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550-551. https://doi.org/10.1038/359550a0
- Ryu, B.Y., Kubota, H., Avarbock, M.R., and Brinster, R.L. (2005). Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc. Natl. Acad. Sci. USA 102, 14302-14307. https://doi.org/10.1073/pnas.0506970102
- Ryu, B.Y., Orwig, K.E., Oatley, J.M., Avarbock, M.R., and Brinster, R.L. (2006). Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 24, 1505-1511. https://doi.org/10.1634/stemcells.2005-0580
- Schlatt, S. (2002). Germ cell transplantation. Mol. Cell. Endocrinol. 186, 163-167. https://doi.org/10.1016/S0303-7207(01)00661-X
- Silvan, U., Diez-Torre, A., Moreno, P., Arluzea, J., Andrade, R., Silio, M., and Arechaga, J. (2013). The spermatogonial stem cell niche in testicular germ cell tumors. Int. J. Dev. Biol. 57, 185-195. https://doi.org/10.1387/ijdb.130068ja
- Spradling, A., Drummond-Barbosa, D., and Kai, T. (2001). Stem cells find their niche. Nature 414, 98-104. https://doi.org/10.1038/35102160
- Tang, L., Rodriguez-Sosa, J.R., and Dobrinski, I. (2012). Germ cell transplantation and testis tissue xenografting in mice. J. Vis. Exp. 6, pii: 3545.
- Tegelenbosch, R.A., and de Rooij, D.G. (1993). A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res. 290, 193-200. https://doi.org/10.1016/0027-5107(93)90159-D
- Vukicevic, S., Kleinman, H.K., Luyten, F.P., Roberts, A.B., Roche, N.S., and Reddi, A.H. (1992). Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202, 1-8. https://doi.org/10.1016/0014-4827(92)90397-Q
Cited by
- Biomodification of PCL Scaffolds with Matrigel, HA, and SR1 EnhancesDe NovoEctopic Bone Marrow Formation Induced by rhBMP-2 vol.4, pp.1, 2015, https://doi.org/10.1089/biores.2015.0020
- Human umbilical perivascular cells (HUCPVCs): a novel source of mesenchymal stromal-like (MSC) cells to support the regeneration of the testicular niche vol.153, pp.1, 2017, https://doi.org/10.1530/REP-16-0220
- Comparison between the cultures of human induced pluripotent stem cells (hiPSCs) on feeder-and serum-free system (Matrigel matrix), MEF and HDF feeder cell lines vol.9, pp.3, 2015, https://doi.org/10.1007/s12079-015-0289-3
- Development of a Test Method for the Evaluation of DNA Damage in Mouse Spermatogonial Stem Cells vol.33, pp.2, 2017, https://doi.org/10.5487/TR.2017.33.2.107
- Optimization of Matrigel-based culture for expansion of neural stem cells vol.19, pp.3, 2015, https://doi.org/10.1080/19768354.2015.1035750
- Expression of transcriptional factor EB (TFEB) in differentiating spermatogonia potentially promotes cell migration in mouse seminiferous epithelium vol.16, pp.1, 2018, https://doi.org/10.1186/s12958-018-0427-x
- Previously claimed male germline stem cells from porcine testis are actually progenitor Leydig cells vol.9, pp.1, 2018, https://doi.org/10.1186/s13287-018-0931-0
- Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells without Microenvironment of Feeder Cells vol.41, pp.7, 2014, https://doi.org/10.14348/molcells.2018.2294
- Reprogramming of spermatogonial stem cells into pluripotent stem cells in the spheroidal state vol.23, pp.6, 2014, https://doi.org/10.1080/19768354.2019.1672578
- 3D models in the new era of immune oncology: focus on T cells, CAF and ECM vol.38, pp.1, 2014, https://doi.org/10.1186/s13046-019-1086-2
- p53 inhibits the proliferation of male germline stem cells from dairy goat cultured on poly‐L‐lysine vol.55, pp.3, 2020, https://doi.org/10.1111/rda.13645
- Investigation of VASA Gene and Protein Expression in Neonate and Adult Testicular Germ Cells in Mice In Vivo and In Vitro vol.22, pp.2, 2014, https://doi.org/10.22074/cellj.2020.6619
- Pentoxifylline treatment of frozen pig sperm affects sperm motility and fetal numbers vol.47, pp.3, 2020, https://doi.org/10.7744/kjoas.20200053
- Cellular Therapy via Spermatogonial Stem Cells for Treating Impaired Spermatogenesis, Non-Obstructive Azoospermia vol.10, pp.7, 2014, https://doi.org/10.3390/cells10071779