DOI QR코드

DOI QR Code

A Study on the Effect of Fiber Orientation on Impact Strength and Thermal Expansion Behavior of Carbon Fiber Reinforced PA6/PPO Composites

탄소섬유 강화 PA6/PPO 복합재료의 섬유 배향에 따른 충격강도 및 열팽창 거동에 관한 연구

  • 원희정 (과학기술연합 대학원 대학교 신소재공학전공 대학원) ;
  • 성동기 (한국기계연구원 부설 재료연구소) ;
  • 이진우 (한국기계연구원 부설 재료연구소) ;
  • 엄문광 (한국기계연구원 부설 재료연구소)
  • Received : 2013.12.04
  • Accepted : 2014.02.28
  • Published : 2014.04.30

Abstract

Short fiber reinforced composites manufactured by injection molding have diverse fiber orientations variable with measuring positions even in the same specimen, which is caused by the flow induced fiber orientation. Fiber orientations considerably affect the mechanical and thermal properties of final composite products. In this study, fiber orientation of injection molded carbon fiber reinforced PA6/PPO composite was measured at several points of the specimen by optical microscopy analysis and the corresponding izod impact strength, coefficients of thermal expansion (CTE) were also measured to investigate the influence of local fiber orientation on the mechanical and thermal properties. Izod impact strength where fiber was perpendicular to the direction of crack propagation was higher than where fiber was parallel to the direction, which could be explained be the impact resistance reinforcing mechanism by fiber orientation. CTE was also lower where fiber was parallel to the measurement direction of CTE than where fiber was perpendicular to the direction, which could be also explained by the dimensional stability mechanism by fiber orientation.

사출 성형을 통해 제조된 단섬유 강화 복합재는 사출 성형 중 발생하는 수지 유동으로 인해 동일 시편 내에서도 다양한 섬유 배향을 갖는다. 이러한 섬유의 배향은 최종 복합재의 기계적, 열적 특성에 많은 영향을 주므로, 본 연구에서는 사출 성형된 탄소단섬유 강화 PA6/PPO 복합재의 섬유 배향을 광학 현미경 분석을 통하여 측정하고 섬유의 배향이 복합재의 충격강도 및 열팽창 계수에 미치는 영향을 분석하였다. 충격강도의 경우에 섬유의 배향이 크랙이 전파되는 방향에 수직으로 배향되어 있을수록 더 높은 충격강도를 보였으며, 이는 섬유의 배향에 따른 충격내성 강화 메커니즘과 밀접한 연관성을 보여주었다. 열팽창 계수의 경우에는 섬유가 열팽창률을 측정하는 방향과 동일한 방향으로 배향되어 있을수록 더 낮은 열팽창계수를 보였으며, 이 결과 역시 섬유의 배향이 열팽창 특성에 미치는 메커니즘과 밀접한 연관성을 보였다.

Keywords

References

  1. Karsli, N.G., and Aytac, A., "Tensile and Thermomechanical Properties of Short Carbon Fiber Reinforced Polyamide6 Composites," Composites Part B: Engineering, Vol. 51, 2013, pp. 270-275. https://doi.org/10.1016/j.compositesb.2013.03.023
  2. Xu, Y., and Hoa, S.V., "Mechanical Properties of Carbon Fiber Reinforced Epoxy/Clay Nanocomposites," Composites Science and Technology, Vol. 68, 2008, pp. 854-861. https://doi.org/10.1016/j.compscitech.2007.08.013
  3. Van den Oever, M., and Peijs, T., "Continuous-Glass-Fibre-Reinforced Polypropylene Composites II. Influence of Maleic Anhydride Modified Polypropylene on Fatigue Behaviour," Composites Part A: Applied Science and Manufacturing, Vol. 29, issue 3, 1998, pp. 227-239. https://doi.org/10.1016/S1359-835X(97)00089-4
  4. Boli, Y., Zhang, X., Bai, S., and Wang, J.J., "Effect of PPO-g-MA on Structures and Properties of PPO/PA6/Short Glass Fiber Composites," Journal of Polymer Science Part B: Polymer Physics, Vol. 47, 2009, pp. 2188-2197. https://doi.org/10.1002/polb.21815
  5. Hassan, A., Yahya, R., Yahaya, A.H., and Tahir, A.R.M., "Tensile, Impact and Fiber Length Properties of Injection-Molded Short and Long Glass Fiber-Reinforced Polyamide 6,6 Composites," Journal of Reinforced Plastics and Composites, Vol. 23, No. 9, 2004, pp. 969-986. https://doi.org/10.1177/0731684404033960
  6. Tjong, S.C., Xu, S.A., and Mai, Y.W., "Impact Fracture Toughness of Short Glass Fiber-Reinforced Polyamide6,6 Hybrid Composites Containing Elastomer Particles Using Essential Work of Fracture Concept," Materials Science and Engineering, A347, 2003, pp. 338-345.
  7. Rezaei, F., Yunus, R., Ibrahim, N.A., and Mahdi, E.S., "Development of Short-Carbon-Fiber-Reinforced Polypropylene Composite for Car Bonnet," Polymer-Plastics Technology and Engineering, Vol. 47, 2008, pp. 351-357. https://doi.org/10.1080/03602550801897323
  8. Mlekusch, B., "Thermoelastic Properties of Short-Fibre-Reinforced Thermoplastics," Composites Science and Technology, Vol. 59, 1999, pp. 911-923. https://doi.org/10.1016/S0266-3538(98)00133-X
  9. Kim, J.W., and Lee, D.G., "Measurement of Fiber Orientation Angle in FRP by Intensity Method," Journal of Materials Processing Technology, Vol. 201, 2008, pp. 755-760. https://doi.org/10.1016/j.jmatprotec.2007.11.149
  10. Gregorio, M., V. Garcia, P. Wapperom, Donald G. Baird, Alex O. Aning, and V. Kunc, "Unambiguous Orientation in Shor Short Fiber Composites over Small Sampling Area in a Center- Gated Disk," Composites Part A: Applied Science and Manufacturing, Vol. 43, 2012, pp. 104-113. https://doi.org/10.1016/j.compositesa.2011.09.024
  11. Blanc, R., Germain, Ch., Da costa, J.P., and Cataldi, M., "Fiber Orientation Measurements in Composite Materials," Composites Part A: Applied Science and Manufacturing, Vol. 37, 2006, pp. 197-206. https://doi.org/10.1016/j.compositesa.2005.04.021
  12. Eberhardt, C., and Clarke, A., "Fibre-Orientation Measurements in Short- Glass- Fibre Composites. Patr I: Automated, High-Angular-Resolution Measurement by Confocal Microscopy," Composites Science and Technology, Vol. 61, 2001, pp. 1389-1400. https://doi.org/10.1016/S0266-3538(01)00038-0
  13. Eberhardt, C., Clarke, A., Vincent, M., Giroud, T., and Flouret, S., "Fibre-Orientation Measurements in Short-Glass-Fibre Composites II: a Quantitative Error Estimate of the 2D Image Analysis," Composites Science and Technology, Vol. 61, 2001, pp. 1961-1974. https://doi.org/10.1016/S0266-3538(01)00106-3
  14. Fu, S.-Y., and Lauke, B., "Effects of fiber Length and Fiber Orientation Distributions on the Tensile Strength of Short-Fiber- Reinforced Polymers," Composites Science and Technology, Vol. 56, 1996, pp. 1179-1190. https://doi.org/10.1016/S0266-3538(96)00072-3
  15. Tezvergil, A., Lassila, L.V.J., and Pekka K, Vallittu, "The Effect of Fiber Orientation on the Thermal Expansion Coefficients of Fiber-Reinforced Composites," Dental Materials, Vol. 19, 2003, pp. 471-477. https://doi.org/10.1016/S0109-5641(02)00092-1
  16. Berrasconi, A., Davoli, P., Basile, A., and Filippi, A., "Effect of Fibre Orientation on the Fatigue Behaviour of a Short Glass Fibre Reinforced Polyamide-6," International Journal of Fatigue, vol. 29, 2007, pp. 199-208. https://doi.org/10.1016/j.ijfatigue.2006.04.001
  17. Yun, S., and Lauke, B., "The Elastic Modulus of Misaligned Short-Fiber-Reinforced Polymers," Composites Science and Technology, Vol. 58, 1998, pp. 389-400. https://doi.org/10.1016/S0266-3538(97)00129-2
  18. Rasheva, Z., Zhang, G., and Burkhart, Th., "A Collelation Between the Tribological and Mechanical Properties of Short Carbon Fibers Reinforced PEEK Materials With Different Fiber Orientations," Tribology International, Vol. 43, 2010, pp. 1430-1437. https://doi.org/10.1016/j.triboint.2010.01.020
  19. Tungjitpornkull, S., and Sombatsompop, N., "Processing Technique and Fiber Orientation Angle affecting the Mechanical Properties of E-Glass Fiber Reinforced Wood/PVC Composites," Journal of Materials Processing Technology, Vol. 209, 2009, pp. 3079-3088. https://doi.org/10.1016/j.jmatprotec.2008.07.021
  20. Lusti, H.R., Hine, P.J., and Andrei A. Gusev, "Direct Numerical Predictions for the Elastic and Thermoelastic Properties of Short Fibre Composites," Composites Science and Technology, Vol. 62, 2002, pp. 1927-1934. https://doi.org/10.1016/S0266-3538(02)00106-9
  21. Won, H. J., "A Study on the Effects of Interfacial Property and Fiber Orientation on Impact Strength and Thermal Expansion Behavior of Pitch Carbon Fiber Reinforced PA6/PPO Composites," Master Thesis, University of Science and Technology, 2014.

Cited by

  1. Influence of Carbon Fiber Direction on Mechanical Properties of Milled Carbon Fibers/Carbon Blacks/Natural Rubber Compounds vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1008
  2. Physical and Mechanical Properties of The Lignin-based Carbon Nanofiber-reinforced Epoxy Composite vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.406
  3. Effect of Seawater Immersion on Impact Strength of Composites Reinforced Ramie Fiber vol.99, pp.8, 2020, https://doi.org/10.3775/jie.99.117
  4. 내충격성 및 전기적 특성 향상을 위한 반도전성 난연컴파운드의 나노융복합 소재기술에 대한 연구 vol.12, pp.1, 2021, https://doi.org/10.15207/jkcs.2021.12.1.193