참고문헌
- Anderson, A. J., Britt, D. W., Johnson, J., Narasimhan, G. and Rodriguez, A. 2005. Physicochemical parameters influencing the formation of biofilms compared in mutant and wild-type cells of Pseudomonas chlororaphis O6. Water Sci. Technol. 52:21-25.
- Balaban, M. and Hendrixson, D. R. 2011. Polar flagellar biosynthesis and a regulator of flagellar number influence spatial parameters of cell division in Campylobacter jejuni. PLoS Pathog. 7:e1002420. https://doi.org/10.1371/journal.ppat.1002420
- Balaban, M., Joslin, S. N. and Hendrixson, D. R. 2009. FlhF and its GTPase activity are required for distinct processes in flagella gene regulation and biosynthesis in Campylobacter jejuni. J. Bacteriol. 191:6602-6611. https://doi.org/10.1128/JB.00884-09
- Chancey, S. T., Wood, D. W., Pierson, E. A. and Pierson, L. S. 2002. Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. Appl. Environ. Microbiol. 68:3308-3314. https://doi.org/10.1128/AEM.68.7.3308-3314.2002
- Cho, S. M., Kang, B. R., Kim, J. J. and Kim, Y. C. 2012. Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABAindependent stomatal closure. Plant Pathol. J. 28:202-206. https://doi.org/10.5423/PPJ.2012.28.2.202
- Foynes, S., Dorrel, N., Ward, S. J., Zhang, Z. W., McColm, A. A., Farthing, M. J. and Wren, B. W. 1999. Functional analysis of the roles of FliQ and FlhB in flagellar expression in Helicobacter pylori. FEMS Microbiol. Lett. 174:33-39. https://doi.org/10.1111/j.1574-6968.1999.tb13546.x
- Han, S. H., Anderson, A. J., Yang, K. Y., Cho, B. H., Kim, K. Y., Lee, M. C., Kim, Y. H. and Kim, Y. C. 2006. Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6. Mol. Plant Pathol. 7:463-472. https://doi.org/10.1111/j.1364-3703.2006.00352.x
- Hickman, J. W. and Harwood, C. S. 2008. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69:376-389. https://doi.org/10.1111/j.1365-2958.2008.06281.x
- Jyot, J., Dasgupta, N. and Ramphal, R. 2002. FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J. Bacteriol. 184: 5251-5260. https://doi.org/10.1128/JB.184.19.5251-5260.2002
- Kang, B. R., Cho, B. H., Anderson, A. J. and Kim, Y. C. 2004. The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325:137-143. https://doi.org/10.1016/j.gene.2003.10.004
- Kang, B. R., Han, S. H., Zdor, R. E., Anderson, A. J., Spencer, M., Yang, K. Y., Kim, Y. H., Lee, M. C., Cho, B. H. and Kim, Y. C. 2007. Inhibition of seed germination and induction of systemic resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacS. J. Microbiol. Biotechnol. 17:586-593.
- Kang, B. R., Yang, K. Y., Cho, B. H., Han, T. H., Kim, I. S., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr. Microbiol. 52:473-476. https://doi.org/10.1007/s00284-005-0427-x
- Kim, Y. C., Leveau, J., McSpadden Gardener, B. B., Pierson, E. A., Pierson III, L. S. and Ryu, C.-M. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77:1548-1555. https://doi.org/10.1128/AEM.01867-10
- Kusumoto, A., Kamisaka, K., Yakushi, T., Terashima, H., Shinohara, A. and Homma, M. 2006. Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. J. Biochem. 139:113-121. https://doi.org/10.1093/jb/mvj010
- Kusumoto, A., Shinohara, A., Terashima, H., Kojima, S., Yakushi, T. and Homma, M. 2008. Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus. Microbiology 154:1390-1399. https://doi.org/10.1099/mic.0.2007/012641-0
- Loper, J. E., Hassan, K. A., et al. 2012. Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 7:e1002784.
- Martinez-Granero, F., Navazo, A., Barahona, E., Redondo-Nieto, M., Rivilla, R. and Marin, M. 2012. The Gac-Rsm and SadB signal transduction pathways converge on AlgU to downregulate motility in Pseudomonas fluorescens. PLoS ONE 7:e31765. https://doi.org/10.1371/journal.pone.0031765
- Martinez-Granero, F., Rivilla, R. and Martin, M. 2006. Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability. Appl. Environ. Microbiol. 72:3429-3434. https://doi.org/10.1128/AEM.72.5.3429-3434.2006
- Mukherjee, A. and Lutkenhaus, J. 1998. Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J. 17:462-469. https://doi.org/10.1093/emboj/17.2.462
- Murray, T. S. and Kazmierczak, B. I. 2013. FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J. Bacteriol. 195:1051-1060. https://doi.org/10.1128/JB.02013-12
- Navazon, A., Barahona, E., Redondo-Nieto, M., Martinez-Granero, F. and Rivilla R. 2009. Three independent signalling pathways repress motility in Pseudomonas fluorescens F113. Microbiol. Biotech. 2:489-498. https://doi.org/10.1111/j.1751-7915.2009.00103.x
- Oh, S, A., Kim, J. S., Park, J. Y., Han, S. H., Dimkpa, C., Anderson, A. J. and Kim, Y. C. 2013. The RpoS sigma factor negatively regulates production of IAA and siderophore in a biocontrol rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 29:323-329. https://doi.org/10.5423/PPJ.NT.01.2013.0013
- O'Toole, G. A. and Kolter, R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30:295-304. https://doi.org/10.1046/j.1365-2958.1998.01062.x
- Park, J. Y., Oh, S. A., Anderon, A. J., Neiswender, J., Kim, J.-C. and Kim, Y. C. 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett. Appl. Microbiol. 52:532-537. https://doi.org/10.1111/j.1472-765X.2011.03036.x
- Poritsanos, N., Selin, C., Fernando, W. G., Nakkeeran, S. and de Kievit, T. R. 2006. A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm. Can. J. Microbiol. 52:1177-1188. https://doi.org/10.1139/w06-079
- Rashid, M. H., Rao, N. N. and Kornberg, A. 2000. Inorganic polyphosphate is required for motility of bacterial pathogens. J. Bacteriol. 182:225-227. https://doi.org/10.1128/JB.182.1.225-227.2000
- Schmidt-Eisenlohr, H., Gast, A. and Baron, C. 2003. Inactivation of gacS does not affect the competitiveness of Pseudomonas chlororaphis in the Arabidopsis thaliana rhizosphere. Appl. Environ. Microbiol. 69:1817-1826. https://doi.org/10.1128/AEM.69.3.1817-1826.2003
- Schniederberend, M., Abdurachim, K., Murray, T. S. and Kazmierczak, B. I. 2013. The GTPase activity of FlhF is dispensable for flagellar localization, but not motility, in Pseudomonas aeruginosa. J. Bacteriol. 195:1051-1060. https://doi.org/10.1128/JB.02013-12
- Spencer, M., Ryu, C.-M., Yang, K.-Y., Kim, Y. C., Kloepper, J. W. and Anderson, A. J. 2003. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiol. Mol. Plant Pathol. 63:27-34. https://doi.org/10.1016/j.pmpp.2003.09.002
- Verstraeten, N., Braeken, K., Debkumari, B., Fauvart, M., Fransaer, J., Vermant, J. and Michiels, J. 2008. Living on a surface: swarming and biofilm formation. Trends Microbiol. 16:496-506. https://doi.org/10.1016/j.tim.2008.07.004
피인용 문헌
- Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, Pseudomonas chlororaphis O6 vol.30, pp.2, 2014, https://doi.org/10.5423/PPJ.NT.02.2014.0012
- Regulation of GacA in Pseudomonas chlororaphis Strains Shows a Niche Specificity vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0137553
- Relationship of the CreBC two-component regulatory system and inner membrane protein CreD with swimming motility in Stenotrophomonas maltophilia vol.12, pp.4, 2017, https://doi.org/10.1371/journal.pone.0174704
- Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere vol.32, pp.2, 2016, https://doi.org/10.5423/PPJ.OA.08.2015.0172
- Genome-wide analysis of the FleQ direct regulon in Pseudomonas fluorescens F113 and Pseudomonas putida KT2440 vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-31371-z