References
-
Polans A, Baehr W, Palczewski K. Turned on by
$Ca^{2+}$ ! The physiology and pathology of$Ca^{2+}$ -binding proteins in the retina. Trends Neurosci. 1996;19(12):547-554. https://doi.org/10.1016/S0166-2236(96)10059-X - Schfer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996;21(4):134-140. https://doi.org/10.1016/0968-0004(96)10020-7
- Baimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the nervous system. Trends Neurosci. 1992;15(8):303-308. https://doi.org/10.1016/0166-2236(92)90081-I
- Celio MR. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience. 1990;35(2):375-475. https://doi.org/10.1016/0306-4522(90)90091-H
- Rogers JH. Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol. 1987;105(3):1343-1353. https://doi.org/10.1083/jcb.105.3.1343
-
Palczewski K, Plans AS, Baehr W, Ames JB.
$Ca^{(2+)}$ -binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioessays. 2000;22(4): 337-350. https://doi.org/10.1002/(SICI)1521-1878(200004)22:4<337::AID-BIES4>3.0.CO;2-Z - Camp AJ, Wijesinghe R. Calretinin: modulator of neuronal excitability. Int J Biochem Cell Biol. 2009;41(11):2118-2121. https://doi.org/10.1016/j.biocel.2009.05.007
- Baglietto-Vargas D, Moreno-Gonzalez I, Sanchez-Varo R, Jimenez S, Trujillo-Estrada L, Sanchez-Mejias E et al. Calretinin interneurons are early targets of extracellular amyloid-beta pathology in PS1/AbetaPP Alzheimer mice hippocampus. J Alzheimers Dis. 2010;21(1):119-132.
- Barraclough R. Calcium-binding protein S100A4 in health and disease. Biochem Biophys Acta. 1998;1448(2):190-199. https://doi.org/10.1016/S0167-4889(98)00143-8
- Heizmann CW, Braun K. Calcium regulation by calciumbinding proteins in neurodegenerative disorders. 1st ed. New York: Springer-Verlag, 1995.
- Leuba G, Kraftsik R, Saini K. Quantitative distribution of parvalbumin, calretinin, and calbindin D28K immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp Neurol. 1998;152(2):278-291. https://doi.org/10.1006/exnr.1998.6838
- Masland RH. Neuronal cell types. Curr Biol. 2004;14(13):497-500. https://doi.org/10.1016/j.cub.2004.06.035
- Wssle H, Grnert U, Rhrenbeck J. Immunocytochemical staining of AII-amacrine cells in the rat retina with antibodies against parvalbumin. J Comp Neurol. 1993;332(4):407-420. https://doi.org/10.1002/cne.903320403
- Casini G, Rickman DW, Brecha NC. AII amacrine cell population in the rabbit retina: identification by parvalbumin immunoreactivity. J Comp Neurol. 1995;356(1):132-142. https://doi.org/10.1002/cne.903560109
- Vaney DI, Gynther IC, Young HM. Rod-signal interneurons in the rabbit retina: 2. AII amacrine cells. J Comp Neurol. 1991;310(2):154-169. https://doi.org/10.1002/cne.903100203
- Strettoi E, Raviola E, Dacheux RF. Synaptic connections of the narrowfield, bistratified rod amacrine cell (AII) in the rabbit retina. J Comp Neurol. 1992;325(2):152-168. https://doi.org/10.1002/cne.903250203
- Wässle H, Grnert U, Chun MH, Boycott BB. The rod pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. J Comp Neurol. 1995;361(3):537-551. https://doi.org/10.1002/cne.903610315
- Kolb H. Amacrine cells of the mammalian retina: neurocircuitry and functional roles. Eye (Lond). 1997;11(6): 904-923. https://doi.org/10.1038/eye.1997.230
- VandeBerg JL, Robinson ES. The laboratory opossum (Monodelphis Domestica) in laboratory research. ILAR J. 1997;38(1):4-12. https://doi.org/10.1093/ilar.38.1.4
- Kahn DM, Huffman KJ, Krubitzer L. Organization and connections of V1 in Monodelphis domestica. J Comp Neurol. 2000;428(2):337-354. https://doi.org/10.1002/1096-9861(20001211)428:2<337::AID-CNE11>3.0.CO;2-2
- Taylor JS, Guillery RW. Early development of the optic chiasm in the gray short-tailed opossum, Monodelphis domestica. J Comp Neurol. 1994;350(1):109-121. https://doi.org/10.1002/cne.903500108
- Klejbor I, Ludkiewicz B, Wojcik S, Turlejski K. Correlation between dopaminergic phenotype and expression of calretinin in the midbrain nuclei of the opossum (Monodelphis domestica): an immunohistological study. Acta Neurobiol Exp (Wars). 2013;73(4):529-540.
- Jia C, Halpern M. Calbindin D28k, parvalbumin, and calretinin immunoreactivity in the main and accessory olfactory bulbs of the gray short-tailed opossum, Monodelphis domestica. J Morphol. 2004;259(3):271-280. https://doi.org/10.1002/jmor.10166
- Domaradzka-Pytel B, Majak K, Spodnik J, Olkowicz S, Turlejski K, Djavadian RL et al. Distribution of the parvalbumin, calbindin-D28K and calretinin immunoreactivity in globus pallidus of the Brazilian short-tailed opossum (Monodelphis domestica). Acta Neurobiol Exp (Wars). 2007;67(4):421-438.
- Jeon MH, Jeon CJ. Immunocytochemical localization of calretinin containing neurons in retina from rabbit, cat, and dog. Neurosci Res. 1998;32(1):75-84. https://doi.org/10.1016/S0168-0102(98)00070-4
- Jeon YK, Kim TJ, Lee JY, Choi JS, Jeon CJ. AII amacrine cells in the inner nuclear layer of bat retina: identification by parvalbumin immunoreactivity. Neuroreport. 2007;18(11):1095-1099. https://doi.org/10.1097/WNR.0b013e3281e72afe
- Sanna PP, Keyser KT, Celio MR, Karten HJ, Bloom FE. Distribution of parvalbumin immunoreactivity in the vertebrate retina. Brain Res. 1993;600(1):141-150. https://doi.org/10.1016/0006-8993(93)90412-G
- Haverkamp S, Wssle H. Immunocytochemical analysis of the mouse retina. J Comp Neurol. 2000;424(1):1-23. https://doi.org/10.1002/1096-9861(20000814)424:1<1::AID-CNE1>3.0.CO;2-V
- Gbriel R, Straznicky C. Immunocytochemical localization of parvalbumin- and neurofilament triplet protein immunoreactivity in the cat retina: colocalization in a subpopulation of AII amacrine cells. Brain Res. 1992;595(1):133-136. https://doi.org/10.1016/0006-8993(92)91462-N
- Sanna PP, Keyser KT, Deerink TJ, Ellisman MH, Karten HJ, Bloom FE. Distribution and ontogeny of parvalbumin immunoreactivity in the chicken retina. Neuroscience. 1992;47(3):745-751. https://doi.org/10.1016/0306-4522(92)90182-2
- Heizmann CW. Parvalbumin, an intracellular calciumbinding protein; distribution, properties and possible roles in mammalian cells. Experientia. 1984;40(9):910-921. https://doi.org/10.1007/BF01946439
- Bennis M, Versaux-Botteri C, Reprant J, Armengol JA. Calbindin, calretinin and parvalbumin immunoreactivity in the retina of the chameleon (Chamaeleo chamaeleon). Brain Behav Evol. 2005;65(3):177-187. https://doi.org/10.1159/000083683
- Chun MH, Han SH, Chung JW, Wssle H. Electron microscopic analysis of the rod pathway of the rat retina. J Comp Neurol. 1993;332(4):421-432. https://doi.org/10.1002/cne.903320404
- Dacheux RF, Raviola E. The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J Neurosci. 1986;6(2):331-345.
- Famiglietti EV Jr, Kolb H. A bistratified amacrine cell and synaptic cirucitry in the inner plexiform layer of the retina. Brain Res. 1975;84(2):293-300. https://doi.org/10.1016/0006-8993(75)90983-X
- Abuhamed MM, Bo X, Alsharafi WA, Jing L, Long L, Zhiguo W et al. Changes in the numbers and distribution of calretinin in the epileptic rat hippocampus. Neurosciences(Riyadh). 2010;15(3):159-166.
- Zeeh C, Hess BJ, Horn AK. Calretinin inputs are confined to motoneurons for upward eye movements in monkey. J Comp Neurol. 2013;521(14):3154-3166. https://doi.org/10.1002/cne.23337
- Byun K, Kim D, Bayarsaikhan E, Oh J, Kim J, Kwak G et al. Changes of calcium binding proteins, c-Fos and COX in hippocampal formation and cerebellum of Niemann-Pick, type C mouse. J Chem Neuroanat. 2013;52:1-8. https://doi.org/10.1016/j.jchemneu.2013.04.006
- Hayashi S, Amari M, Okamoto K. Loss of calretinin- and parvalbumin-immunoreactive axons in anterolateral columns beyond the corticospinal tracts of amyotrophic lateral sclerosis spinal cords. J Neurol Sci. 2013;331(1-2):61-66. https://doi.org/10.1016/j.jns.2013.05.008
- Hurley MJ, Brandon B, Gentleman SM, Dexter DT. Parkinson's disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain. 2013;136(7):2077-2097. https://doi.org/10.1093/brain/awt134
- Kim JE, Kwak SE, Kim DS, Won MH, Kwon OS, Choi SY et al. Reduced calcium binding protein immunoreactivity induced by electroconvulsive shock indicates neuronal hyperactivity, not neuronal death or deactivation. Neuroscience. 2006;137(1):317-326. https://doi.org/10.1016/j.neuroscience.2005.08.052
-
Sokal I, Li N, Verlinde CL, Haeseleer F, Baehr W, Palczewski K.
$Ca^{(2+)}$ -binding proteins in the retina: from discovery to etiology of human disease(1). Biochim Biophys Acta. 2000;1498(2-3):233-251. https://doi.org/10.1016/S0167-4889(00)00099-9
Cited by
- The rod signaling pathway in marsupial retinae vol.13, pp.8, 2018, https://doi.org/10.1371/journal.pone.0202089