DOI QR코드

DOI QR Code

Identification of Calretinin-immunoreactive AII Amacrine Cells in the Brazilian Opossum (Monodelphis domestica)

브라질산 주머니쥐(Monodelphis domestica) 망막 내에서의 calretinin 면역반응성을 가지는 AII 무축삭세포의 동정

  • Jeong, Se-Jin (School of Life Sciences, Kyungpook National University) ;
  • Jeon, Chang-Jin (School of Life Sciences, Kyungpook National University)
  • 정세진 (경북대학교 자연과학대학 생명과학부) ;
  • 전창진 (경북대학교 자연과학대학 생명과학부)
  • Received : 2014.05.19
  • Accepted : 2014.06.18
  • Published : 2014.06.30

Abstract

Purpose: The purpose of this study was to investigate the immunoreactivity of calretinin in Brazilian opossum (Monodelphis domestica) retina. Calcium-binding protein calretinin is known to play a key role in calcium-mediated signal transduction. Methods: Experiments have been performed by standard immunocytochemical techniques on retina of the Brazilian opossum. Results: Calretinin-immunoreactivity was exhibited within the horizontal subpopulations, AII amacrine and ganglion cell subpopulations in the Brazilian opossum retina. Especially, all calretinin-immunoreactive AII amacrine cells also expressed parvalbumin. Conclusions: Similar to other mammalian retinas, calretinin-immunoreactivity was also observed within the AII amacrine cells in the Brazilian opossum retina. Thus, calretinin can be a marker of AII amacrine cells in the Brazilian opossum retina.

목적: 본 연구의 목적은 브라질산 주머니쥐(Monodelphis domestica) 망막에서의 calretinin 면역반응성을 연구하는데에 있다. 칼슘결합단백질 calretinin은 칼슘매개-신호전달에서 중요한 역할을 한다고 알려져 있다. 방법: 표준 면역조직화학법을 이용하여 브라질산 주머니쥐 망막을 대상으로 실험하였다. 결과: 브라질산 주머니쥐 망막에서 calretinin은 일부의 수평세포, AII 무축삭세포, 일부의 신경절세포에서 면역반응성을 보였다. 특히, calretinin 면역반응성을 가지는 모든 AII 무축삭세포는 또 다른 칼슘결합단백질인 parvalbumin을 발현하였다. 결론: 다른 포유류 망막과 다를 바 없이, 브라질산 주머니쥐 망막에서도 AII 무축삭세포에서 calretinin 면역반응성이 관찰되었다. 이를 통해 calretinin이 브라질산 주머니쥐 망막에서도 AII 무축삭세포의 marker로 이용될 수 있다는 점을 확인하였다.

Keywords

References

  1. Polans A, Baehr W, Palczewski K. Turned on by $Ca^{2+}$! The physiology and pathology of $Ca^{2+}$-binding proteins in the retina. Trends Neurosci. 1996;19(12):547-554. https://doi.org/10.1016/S0166-2236(96)10059-X
  2. Schfer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996;21(4):134-140. https://doi.org/10.1016/0968-0004(96)10020-7
  3. Baimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the nervous system. Trends Neurosci. 1992;15(8):303-308. https://doi.org/10.1016/0166-2236(92)90081-I
  4. Celio MR. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience. 1990;35(2):375-475. https://doi.org/10.1016/0306-4522(90)90091-H
  5. Rogers JH. Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol. 1987;105(3):1343-1353. https://doi.org/10.1083/jcb.105.3.1343
  6. Palczewski K, Plans AS, Baehr W, Ames JB. $Ca^{(2+)}$-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioessays. 2000;22(4): 337-350. https://doi.org/10.1002/(SICI)1521-1878(200004)22:4<337::AID-BIES4>3.0.CO;2-Z
  7. Camp AJ, Wijesinghe R. Calretinin: modulator of neuronal excitability. Int J Biochem Cell Biol. 2009;41(11):2118-2121. https://doi.org/10.1016/j.biocel.2009.05.007
  8. Baglietto-Vargas D, Moreno-Gonzalez I, Sanchez-Varo R, Jimenez S, Trujillo-Estrada L, Sanchez-Mejias E et al. Calretinin interneurons are early targets of extracellular amyloid-beta pathology in PS1/AbetaPP Alzheimer mice hippocampus. J Alzheimers Dis. 2010;21(1):119-132.
  9. Barraclough R. Calcium-binding protein S100A4 in health and disease. Biochem Biophys Acta. 1998;1448(2):190-199. https://doi.org/10.1016/S0167-4889(98)00143-8
  10. Heizmann CW, Braun K. Calcium regulation by calciumbinding proteins in neurodegenerative disorders. 1st ed. New York: Springer-Verlag, 1995.
  11. Leuba G, Kraftsik R, Saini K. Quantitative distribution of parvalbumin, calretinin, and calbindin D28K immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp Neurol. 1998;152(2):278-291. https://doi.org/10.1006/exnr.1998.6838
  12. Masland RH. Neuronal cell types. Curr Biol. 2004;14(13):497-500. https://doi.org/10.1016/j.cub.2004.06.035
  13. Wssle H, Grnert U, Rhrenbeck J. Immunocytochemical staining of AII-amacrine cells in the rat retina with antibodies against parvalbumin. J Comp Neurol. 1993;332(4):407-420. https://doi.org/10.1002/cne.903320403
  14. Casini G, Rickman DW, Brecha NC. AII amacrine cell population in the rabbit retina: identification by parvalbumin immunoreactivity. J Comp Neurol. 1995;356(1):132-142. https://doi.org/10.1002/cne.903560109
  15. Vaney DI, Gynther IC, Young HM. Rod-signal interneurons in the rabbit retina: 2. AII amacrine cells. J Comp Neurol. 1991;310(2):154-169. https://doi.org/10.1002/cne.903100203
  16. Strettoi E, Raviola E, Dacheux RF. Synaptic connections of the narrowfield, bistratified rod amacrine cell (AII) in the rabbit retina. J Comp Neurol. 1992;325(2):152-168. https://doi.org/10.1002/cne.903250203
  17. Wässle H, Grnert U, Chun MH, Boycott BB. The rod pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. J Comp Neurol. 1995;361(3):537-551. https://doi.org/10.1002/cne.903610315
  18. Kolb H. Amacrine cells of the mammalian retina: neurocircuitry and functional roles. Eye (Lond). 1997;11(6): 904-923. https://doi.org/10.1038/eye.1997.230
  19. VandeBerg JL, Robinson ES. The laboratory opossum (Monodelphis Domestica) in laboratory research. ILAR J. 1997;38(1):4-12. https://doi.org/10.1093/ilar.38.1.4
  20. Kahn DM, Huffman KJ, Krubitzer L. Organization and connections of V1 in Monodelphis domestica. J Comp Neurol. 2000;428(2):337-354. https://doi.org/10.1002/1096-9861(20001211)428:2<337::AID-CNE11>3.0.CO;2-2
  21. Taylor JS, Guillery RW. Early development of the optic chiasm in the gray short-tailed opossum, Monodelphis domestica. J Comp Neurol. 1994;350(1):109-121. https://doi.org/10.1002/cne.903500108
  22. Klejbor I, Ludkiewicz B, Wojcik S, Turlejski K. Correlation between dopaminergic phenotype and expression of calretinin in the midbrain nuclei of the opossum (Monodelphis domestica): an immunohistological study. Acta Neurobiol Exp (Wars). 2013;73(4):529-540.
  23. Jia C, Halpern M. Calbindin D28k, parvalbumin, and calretinin immunoreactivity in the main and accessory olfactory bulbs of the gray short-tailed opossum, Monodelphis domestica. J Morphol. 2004;259(3):271-280. https://doi.org/10.1002/jmor.10166
  24. Domaradzka-Pytel B, Majak K, Spodnik J, Olkowicz S, Turlejski K, Djavadian RL et al. Distribution of the parvalbumin, calbindin-D28K and calretinin immunoreactivity in globus pallidus of the Brazilian short-tailed opossum (Monodelphis domestica). Acta Neurobiol Exp (Wars). 2007;67(4):421-438.
  25. Jeon MH, Jeon CJ. Immunocytochemical localization of calretinin containing neurons in retina from rabbit, cat, and dog. Neurosci Res. 1998;32(1):75-84. https://doi.org/10.1016/S0168-0102(98)00070-4
  26. Jeon YK, Kim TJ, Lee JY, Choi JS, Jeon CJ. AII amacrine cells in the inner nuclear layer of bat retina: identification by parvalbumin immunoreactivity. Neuroreport. 2007;18(11):1095-1099. https://doi.org/10.1097/WNR.0b013e3281e72afe
  27. Sanna PP, Keyser KT, Celio MR, Karten HJ, Bloom FE. Distribution of parvalbumin immunoreactivity in the vertebrate retina. Brain Res. 1993;600(1):141-150. https://doi.org/10.1016/0006-8993(93)90412-G
  28. Haverkamp S, Wssle H. Immunocytochemical analysis of the mouse retina. J Comp Neurol. 2000;424(1):1-23. https://doi.org/10.1002/1096-9861(20000814)424:1<1::AID-CNE1>3.0.CO;2-V
  29. Gbriel R, Straznicky C. Immunocytochemical localization of parvalbumin- and neurofilament triplet protein immunoreactivity in the cat retina: colocalization in a subpopulation of AII amacrine cells. Brain Res. 1992;595(1):133-136. https://doi.org/10.1016/0006-8993(92)91462-N
  30. Sanna PP, Keyser KT, Deerink TJ, Ellisman MH, Karten HJ, Bloom FE. Distribution and ontogeny of parvalbumin immunoreactivity in the chicken retina. Neuroscience. 1992;47(3):745-751. https://doi.org/10.1016/0306-4522(92)90182-2
  31. Heizmann CW. Parvalbumin, an intracellular calciumbinding protein; distribution, properties and possible roles in mammalian cells. Experientia. 1984;40(9):910-921. https://doi.org/10.1007/BF01946439
  32. Bennis M, Versaux-Botteri C, Reprant J, Armengol JA. Calbindin, calretinin and parvalbumin immunoreactivity in the retina of the chameleon (Chamaeleo chamaeleon). Brain Behav Evol. 2005;65(3):177-187. https://doi.org/10.1159/000083683
  33. Chun MH, Han SH, Chung JW, Wssle H. Electron microscopic analysis of the rod pathway of the rat retina. J Comp Neurol. 1993;332(4):421-432. https://doi.org/10.1002/cne.903320404
  34. Dacheux RF, Raviola E. The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J Neurosci. 1986;6(2):331-345.
  35. Famiglietti EV Jr, Kolb H. A bistratified amacrine cell and synaptic cirucitry in the inner plexiform layer of the retina. Brain Res. 1975;84(2):293-300. https://doi.org/10.1016/0006-8993(75)90983-X
  36. Abuhamed MM, Bo X, Alsharafi WA, Jing L, Long L, Zhiguo W et al. Changes in the numbers and distribution of calretinin in the epileptic rat hippocampus. Neurosciences(Riyadh). 2010;15(3):159-166.
  37. Zeeh C, Hess BJ, Horn AK. Calretinin inputs are confined to motoneurons for upward eye movements in monkey. J Comp Neurol. 2013;521(14):3154-3166. https://doi.org/10.1002/cne.23337
  38. Byun K, Kim D, Bayarsaikhan E, Oh J, Kim J, Kwak G et al. Changes of calcium binding proteins, c-Fos and COX in hippocampal formation and cerebellum of Niemann-Pick, type C mouse. J Chem Neuroanat. 2013;52:1-8. https://doi.org/10.1016/j.jchemneu.2013.04.006
  39. Hayashi S, Amari M, Okamoto K. Loss of calretinin- and parvalbumin-immunoreactive axons in anterolateral columns beyond the corticospinal tracts of amyotrophic lateral sclerosis spinal cords. J Neurol Sci. 2013;331(1-2):61-66. https://doi.org/10.1016/j.jns.2013.05.008
  40. Hurley MJ, Brandon B, Gentleman SM, Dexter DT. Parkinson's disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain. 2013;136(7):2077-2097. https://doi.org/10.1093/brain/awt134
  41. Kim JE, Kwak SE, Kim DS, Won MH, Kwon OS, Choi SY et al. Reduced calcium binding protein immunoreactivity induced by electroconvulsive shock indicates neuronal hyperactivity, not neuronal death or deactivation. Neuroscience. 2006;137(1):317-326. https://doi.org/10.1016/j.neuroscience.2005.08.052
  42. Sokal I, Li N, Verlinde CL, Haeseleer F, Baehr W, Palczewski K. $Ca^{(2+)}$-binding proteins in the retina: from discovery to etiology of human disease(1). Biochim Biophys Acta. 2000;1498(2-3):233-251. https://doi.org/10.1016/S0167-4889(00)00099-9

Cited by

  1. The rod signaling pathway in marsupial retinae vol.13, pp.8, 2018, https://doi.org/10.1371/journal.pone.0202089